login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

2-adic order of the tribonacci sequence.
2

%I #26 Jan 29 2021 20:46:51

%S 0,0,1,2,0,0,3,2,0,0,1,3,0,0,6,3,0,0,1,2,0,0,3,2,0,0,1,4,0,0,6,4,0,0,

%T 1,2,0,0,3,2,0,0,1,3,0,0,7,3,0,0,1,2,0,0,3,2,0,0,1,5,0,0,7,5,0,0,1,2,

%U 0,0,3,2,0,0,1,3,0,0,6,3,0,0,1,2,0,0,3,2,0,0,1,4,0,0,6,4,0,0,1,2,0,0,3,2

%N 2-adic order of the tribonacci sequence.

%H Alois P. Heinz, <a href="/A248174/b248174.txt">Table of n, a(n) for n = 1..10000</a>

%H Diego Marques and Tamás Lengyel, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Lengyel/lengyel21.html">The 2-adic order of the Tribonacci numbers and the equation T_n = m!</a>, Journal of Integer Sequences, Vol. 17 (2014), Article 14.10.1.

%F a(n) = A007814(A000073(n+1)). - _Michel Marcus_, Oct 03 2014

%F From _Amiram Eldar_, Jan 29 2021: (Start)

%F The following 7 formulas completely specify the sequence (Marques and Lengyel, 2014):

%F 1. a(n) = 0 if n == 1 (mod 4) or n == 2 (mod 4).

%F 2. a(n) = 1 if n == 3 (mod 16) or n == 11 (mod 16).

%F 3. a(n) = 2 if n == 4 (mod 16) or n == 8 (mod 16).

%F 4. a(n) = 3 if n == 7 (mod 16).

%F 5. a(n) = A007814(n) - 1 if n == 0 (mod 16).

%F 6. a(n) = A007814(n+4) - 1 if n == 12 (mod 16).

%F 7. a(n) = A007814((n+1)*(n+17)) - 3 if n == 15 (mod 16).

%F Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = 3/2. (End)

%e For n = 7 we have T_7 = A000073(8) = 24 and the highest power of 2 dividing T_7 is 8 = 2^3.

%p b:= n-> (<<0|1|0>, <0|0|1>, <1|1|1>>^n. <<0, 1, 1>>)[1, 1]:

%p a:= n-> padic[ordp](b(n), 2):

%p seq(a(n), n=1..120); # _Alois P. Heinz_, Oct 03 2014

%t IntegerExponent[LinearRecurrence[{1, 1, 1}, {1, 1, 2}, 100], 2] (* _Amiram Eldar_, Jan 29 2021 *)

%Y Cf. A000073, A007814.

%K nonn

%O 1,4

%A _Jeffrey Shallit_, Oct 03 2014