login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125095
Expansion of phi(-x) * psi(x^4) in powers of x where psi(), phi() are Ramanujan theta functions.
3
1, -2, 0, 0, 3, -2, 0, 0, 2, -2, 0, 0, 1, -4, 0, 0, 4, 0, 0, 0, 2, -2, 0, 0, 1, -4, 0, 0, 4, -2, 0, 0, 0, -2, 0, 0, 2, -2, 0, 0, 5, -2, 0, 0, 2, 0, 0, 0, 2, -6, 0, 0, 0, -2, 0, 0, 2, 0, 0, 0, 3, -4, 0, 0, 4, -2, 0, 0, 2, -2, 0, 0, 0, -2, 0, 0, 6, 0, 0, 0, 0
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 45 of the 74 eta-quotients listed in Table I of Martin (1996). - Michael Somos, Mar 14 2012
LINKS
Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/2) * (eta(q)^2 * eta(q^8)^2) / (eta(q^2) * eta(q^4)) in powers of q.
Given g.f. A(x), then B(q) = q * A(q^2) satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u1^2*u6 * (u1 + 3*u3) + 2 * u2^2*u3 * (u2 + 3*u6) - 3 * u3^2*u2 * (u1 + u3) - 6 * u6^2*u1 * (u2 + u6).
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(p^e) = (e+1) * (-1)^e if p == 1, 3 (mod 8), b(p^e) = (1 + (-1)^e) / 2 if p == 5, 7 (mod 8).
Euler transform of period 8 sequence [ -2, -1, -2, 0, -2, -1, -2, -2, ...].
G.f.: (Sum_{k in Z} (-1)^k * x^k^2) * (Sum_{k>=0} x^(2*k^2 + 2*k)).
a(4*n + 2) = a(4*n + 3) = 0. a(n) = (-1)^n * A113411(n). a(4*n) = A112603(n). a(4*n + 1) = -2 * A033761(n).
EXAMPLE
G.f. = 1 - 2*x + 3*x^4 - 2*x^5 + 2*x^8 - 2*x^9 + x^12 - 4*x^13 + 4*x^16 + ...
G.f. = q - 2*q^3 + 3*q^9 - 2*q^11 + 2*q^17 - 2*q^19 + q^25 - 4*q^27 + 4*q^33 + ...
MATHEMATICA
a[ n_] := If[ n < 0, 0, (-1)^n DivisorSum[ 2 n + 1, If[ Mod[#, 8] > 3, -1, 1] &]]; (* Michael Somos, Jul 09 2015 *)
a[ n_] := SeriesCoefficient[ (QPochhammer[ x] QPochhammer[ x^8])^2 / (QPochhammer[ x^2] QPochhammer[ x^4]), {x, 0, n}]; (* Michael Somos, Jul 09 2015 *)
PROG
(PARI) {a(n) = if( n<0, 0, (-1)^n * sumdiv( 2*n + 1, d, (-1)^(d%8>3)))};
(PARI) {a(n) = if( n<0, 0, n = 2*n + 1; qfrep( [1, 0; 0, 8], n)[n] - qfrep( [3, 1; 1, 3], n)[n])};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^8 + A)^2 / (eta(x^2 + A) * eta(x^4 + A)), n))}
(PARI) {a(n) = if( n<0, 0, n = 2*n + 1; sumdiv( n, d, kronecker(2, d) * kronecker( -4, n/d)))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Nov 20 2006
STATUS
approved