login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A125095 Expansion of phi(-x) * psi(x^4) in powers of x where psi(), phi() are Ramanujan theta functions. 3
1, -2, 0, 0, 3, -2, 0, 0, 2, -2, 0, 0, 1, -4, 0, 0, 4, 0, 0, 0, 2, -2, 0, 0, 1, -4, 0, 0, 4, -2, 0, 0, 0, -2, 0, 0, 2, -2, 0, 0, 5, -2, 0, 0, 2, 0, 0, 0, 2, -6, 0, 0, 0, -2, 0, 0, 2, 0, 0, 0, 3, -4, 0, 0, 4, -2, 0, 0, 2, -2, 0, 0, 0, -2, 0, 0, 6, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Number 45 of the 74 eta-quotients listed in Table I of Martin (1996). - Michael Somos, Mar 14 2012

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.

Michael Somos, Index to Yves Martin's list of 74 multiplicative eta-quotients and their A-numbers

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of q^(-1/2) * (eta(q)^2 * eta(q^8)^2) / (eta(q^2) * eta(q^4)) in powers of q.

Given g.f. A(x), then B(q) = q * A(q^2) satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u1^2*u6 * (u1 + 3*u3) + 2 * u2^2*u3 * (u2 + 3*u6) - 3 * u3^2*u2 * (u1 + u3) - 6 * u6^2*u1 * (u2 + u6).

a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(p^e) = (e+1) * (-1)^e if p == 1, 3 (mod 8), b(p^e) = (1 + (-1)^e) / 2 if p == 5, 7 (mod 8).

Euler transform of period 8 sequence [ -2, -1, -2, 0, -2, -1, -2, -2, ...].

G.f.: (Sum_{k in Z} (-1)^k * x^k^2) * (Sum_{k>=0} x^(2*k^2 + 2*k)).

a(4*n + 2) = a(4*n + 3) = 0. a(n) = (-1)^n * A113411(n). a(4*n) = A112603(n). a(4*n + 1) = -2 * A033761(n).

EXAMPLE

G.f. = 1 - 2*x + 3*x^4 - 2*x^5 + 2*x^8 - 2*x^9 + x^12 - 4*x^13 + 4*x^16 + ...

G.f. = q - 2*q^3 + 3*q^9 - 2*q^11 + 2*q^17 - 2*q^19 + q^25 - 4*q^27 + 4*q^33 + ...

MATHEMATICA

a[ n_] := If[ n < 0, 0, (-1)^n DivisorSum[ 2 n + 1, If[ Mod[#, 8] > 3, -1, 1] &]]; (* Michael Somos, Jul 09 2015 *)

a[ n_] := SeriesCoefficient[ (QPochhammer[ x] QPochhammer[ x^8])^2 / (QPochhammer[ x^2] QPochhammer[ x^4]), {x, 0, n}]; (* Michael Somos, Jul 09 2015 *)

PROG

(PARI) {a(n) = if( n<0, 0, (-1)^n * sumdiv( 2*n + 1, d, (-1)^(d%8>3)))};

(PARI) {a(n) = if( n<0, 0, n = 2*n + 1; qfrep( [1, 0; 0, 8], n)[n] - qfrep( [3, 1; 1, 3], n)[n])};

(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^8 + A)^2 / (eta(x^2 + A) * eta(x^4 + A)), n))}

(PARI) {a(n) = if( n<0, 0, n = 2*n + 1; sumdiv( n, d, kronecker(2, d) * kronecker( -4, n/d)))};

CROSSREFS

Cf. A033761, A113411, A112603.

Sequence in context: A167634 A174169 A248174 * A113411 A260110 A261115

Adjacent sequences:  A125092 A125093 A125094 * A125096 A125097 A125098

KEYWORD

sign

AUTHOR

Michael Somos, Nov 20 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 30 05:35 EDT 2020. Contains 334712 sequences. (Running on oeis4.)