login
A133362
Decimal expansion of 1/(2 log 2).
1
7, 2, 1, 3, 4, 7, 5, 2, 0, 4, 4, 4, 4, 8, 1, 7, 0, 3, 6, 7, 9, 9, 6, 2, 3, 4, 0, 5, 0, 0, 9, 4, 6, 0, 6, 8, 7, 1, 3, 3, 2, 2, 9, 7, 7, 0, 7, 6, 4, 9, 2, 9, 6, 7, 0, 6, 7, 7, 2, 4, 7, 0, 3, 4, 6, 5, 5, 5, 4, 6, 0, 9, 5, 9, 0, 5, 9, 2, 5, 3, 9, 9, 4, 2, 7, 6, 3, 3, 1, 1, 4, 4, 6, 7, 5, 3, 1, 7, 2, 2, 4, 8, 4, 9, 8
OFFSET
0,1
COMMENTS
PrimePi(n) = A000720(n) => (log n)/(2 log 2) for all n > 2. An elegant proof is given in Kontoyiannis.
Base 4 logarithm of the natural logarithm base. - Alonso del Arte, Aug 31 2014
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.7 Lengyel's constant p. 319 and Section 5.11 Feller's coin tossing p. 341.
EXAMPLE
0.7213475204444817036799623405009460...
MAPLE
Digits:=100: evalf(0.5/log(2)); # R. J. Mathar, Nov 09 2007
MATHEMATICA
RealDigits[1/(2Log[2]), 10, 128][[1]] (* Alonso del Arte, Aug 31 2014 *)
PROG
(PARI) 1/log(4) \\ Charles R Greathouse IV, Mar 24 2016
CROSSREFS
Cf. A000720, A016627 (reciprocal).
Sequence in context: A191856 A220862 A198229 * A317925 A010140 A222067
KEYWORD
cons,easy,nonn
AUTHOR
Jonathan Vos Post, Oct 26 2007
EXTENSIONS
More terms from R. J. Mathar, Nov 09 2007
STATUS
approved