login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133359
E.g.f. satisfies: A(x) = x*(cosh(exp(A(x))-1)).
1
0, 1, 0, 3, 12, 100, 1050, 12649, 185752, 3112407, 59052390, 1252912584, 29341892580, 752441547741, 20966217326418, 630757511101995, 20377626191365936, 703606826009437384, 25858057389119292222
OFFSET
0,4
LINKS
FORMULA
a(n) ~ n^(n-1) * sqrt(s/(1+exp(2*s)*s)) / (exp(n) * r^n), where r = 0.4494712387490528668... and s = 0.6780159617201756415... are roots of the system of equations 1+exp(s)*r*sinh(1-exp(s)) = 0, s = r*cosh(1-exp(s)). - Vaclav Kotesovec, Jul 16 2014
MAPLE
A:= proc(n) option remember; if n=0 then 0 else convert (series (x* (cosh (exp(A(n-1))-1)), x=0, n+1), polynom) fi end: a:= n-> coeff (A(n), x, n)*n!: seq (a(n), n=0..24);
MATHEMATICA
A[n_] := A[n] = If[n == 0, 0, Normal[Series[x*(Cosh[Exp[A[n-1]]-1]), {x, 0, n+1}]]]; a[n_] := Coefficient[A[n], x, n]*n!; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Mar 05 2014, after Alois P. Heinz *)
CoefficientList[InverseSeries[Series[x*Sech[1 - E^x], {x, 0, 20}], x], x] * Range[0, 20]! (* Vaclav Kotesovec, Jul 16 2014 *)
CROSSREFS
Sequence in context: A374582 A162055 A067300 * A102687 A202302 A350953
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 27 2008
STATUS
approved