login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198229 Decimal expansion of greatest x having 3*x^2+2x=4*cos(x). 3
7, 2, 1, 3, 4, 1, 3, 0, 7, 6, 4, 8, 0, 1, 5, 5, 8, 2, 4, 2, 1, 0, 3, 1, 7, 2, 2, 8, 7, 2, 3, 0, 6, 4, 4, 8, 0, 7, 1, 3, 2, 7, 4, 5, 7, 8, 8, 7, 2, 6, 1, 7, 7, 3, 1, 8, 9, 8, 8, 0, 8, 7, 2, 0, 6, 2, 1, 0, 8, 1, 3, 0, 5, 2, 7, 1, 2, 8, 1, 1, 4, 2, 2, 4, 1, 6, 5, 1, 3, 1, 8, 1, 0, 5, 3, 3, 5, 2, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A197737 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=0..98.

EXAMPLE

least x: -1.146069580210441813394351195780611...

greatest x: 0.721341307648015582421031722872306448...

MATHEMATICA

a = 3; b = 2; c = 4;

f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]

Plot[{f[x], g[x]}, {x, -2, 1}]

r1 = x /. FindRoot[f[x] == g[x], {x, -1.2, -1.1}, WorkingPrecision -> 110]

RealDigits[r1] (* A198228 *)

r2 = x /. FindRoot[f[x] == g[x], {x, .72, .73}, WorkingPrecision -> 110]

RealDigits[r2] (* A198229 *)

CROSSREFS

Cf. A197737.

Sequence in context: A100957 A191856 A220862 * A133362 A317925 A010140

Adjacent sequences:  A198226 A198227 A198228 * A198230 A198231 A198232

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Oct 23 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 12 05:35 EDT 2020. Contains 335658 sequences. (Running on oeis4.)