login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198232 Decimal expansion of least x having 3*x^2+3x=2*cos(x). 3
1, 2, 0, 0, 7, 7, 7, 2, 7, 8, 5, 1, 7, 3, 9, 1, 2, 9, 0, 6, 6, 3, 6, 5, 4, 5, 8, 7, 6, 8, 2, 6, 7, 1, 2, 8, 3, 9, 0, 6, 4, 6, 0, 6, 7, 4, 0, 2, 6, 8, 3, 9, 5, 7, 3, 8, 7, 5, 7, 4, 8, 1, 3, 5, 6, 4, 6, 4, 3, 0, 1, 6, 8, 4, 8, 9, 1, 9, 8, 5, 8, 9, 2, 9, 7, 8, 0, 6, 7, 0, 0, 6, 1, 6, 9, 7, 4, 2, 9 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

See A197737 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=1..99.

EXAMPLE

least x: -1.200777278517391290663654587682671...

greatest x: 0.4258157107483169845689223216341480870...

MATHEMATICA

a = 3; b = 3; c = 2;

f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]

Plot[{f[x], g[x]}, {x, -2, 1}]

r1 = x /. FindRoot[f[x] == g[x], {x, -1.3, -1.2}, WorkingPrecision -> 110]

RealDigits[r1](* A198232 *)

r2 = x /. FindRoot[f[x] == g[x], {x, .42, .43}, WorkingPrecision -> 110]

RealDigits[r2](* A198233 *)

CROSSREFS

Cf. A197737.

Sequence in context: A143024 A271971 A278157 * A160213 A192058 A021502

Adjacent sequences:  A198229 A198230 A198231 * A198233 A198234 A198235

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Oct 23 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 11 09:30 EDT 2020. Contains 336423 sequences. (Running on oeis4.)