

A198235


Decimal expansion of greatest x having 3*x^2+3x=4*cos(x).


3



6, 4, 6, 4, 3, 5, 5, 6, 7, 5, 2, 7, 7, 2, 2, 5, 8, 8, 3, 7, 9, 1, 3, 3, 8, 2, 8, 1, 0, 8, 7, 4, 3, 8, 8, 9, 3, 9, 7, 9, 1, 9, 1, 6, 8, 5, 7, 2, 7, 9, 8, 9, 6, 7, 9, 8, 9, 0, 5, 4, 7, 6, 1, 3, 1, 2, 9, 2, 5, 5, 6, 6, 3, 6, 3, 9, 0, 5, 4, 5, 4, 8, 0, 5, 8, 4, 8, 6, 8, 1, 2, 8, 3, 7, 0, 5, 9, 3, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

See A197737 for a guide to related sequences. The Mathematica program includes a graph.


LINKS



EXAMPLE

least x: 1.28838923732282692044695376198415263654...
greatest x: 0.646435567527722588379133828108743889...


MATHEMATICA

a = 3; b = 3; c = 4;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, 2, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, 1.3, 1.2}, WorkingPrecision > 110]
r2 = x /. FindRoot[f[x] == g[x], {x, .64, .65}, WorkingPrecision > 110]


CROSSREFS



KEYWORD



AUTHOR



STATUS

approved



