login
A198233
Decimal expansion of greatest x having 3*x^2+3x=2*cos(x).
3
4, 2, 5, 8, 1, 5, 7, 1, 0, 7, 4, 8, 3, 1, 6, 9, 8, 4, 5, 6, 8, 9, 2, 2, 3, 2, 1, 6, 3, 4, 1, 4, 8, 0, 8, 7, 0, 5, 3, 8, 5, 1, 4, 4, 7, 8, 5, 9, 6, 2, 9, 9, 8, 0, 0, 1, 1, 5, 3, 5, 2, 9, 4, 3, 8, 6, 2, 1, 4, 1, 1, 7, 9, 7, 6, 1, 3, 3, 1, 6, 0, 9, 1, 4, 5, 3, 3, 8, 4, 6, 5, 8, 4, 5, 7, 1, 3, 3, 3
OFFSET
0,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -1.200777278517391290663654587682671...
greatest x: 0.4258157107483169845689223216341480870...
MATHEMATICA
a = 3; b = 3; c = 2;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -2, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -1.3, -1.2}, WorkingPrecision -> 110]
RealDigits[r1](* A198232 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .42, .43}, WorkingPrecision -> 110]
RealDigits[r2](* A198233 *)
CROSSREFS
Cf. A197737.
Sequence in context: A134235 A266626 A159979 * A169850 A371904 A112962
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 23 2011
STATUS
approved