login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198226 Decimal expansion of least x having 3*x^2+2x=3*cos(x). 3
1, 0, 9, 0, 4, 3, 8, 2, 5, 6, 0, 3, 8, 8, 7, 4, 4, 0, 8, 9, 2, 5, 2, 0, 3, 5, 1, 2, 6, 0, 6, 8, 0, 6, 5, 3, 7, 2, 5, 2, 4, 7, 5, 9, 2, 4, 1, 5, 3, 5, 9, 8, 0, 5, 0, 3, 7, 7, 3, 9, 4, 4, 1, 1, 3, 8, 6, 7, 7, 7, 3, 1, 4, 3, 0, 8, 6, 0, 7, 4, 9, 8, 1, 3, 9, 1, 7, 6, 9, 1, 1, 0, 3, 1, 0, 8, 4, 7, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

See A197737 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=1..99.

EXAMPLE

least x: -1.0904382560388744089252035126068065372...

greatest x: 0.626466337849291863012350106335876205...

MATHEMATICA

a = 3; b = 2; c = 3;

f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]

Plot[{f[x], g[x]}, {x, -2, 1}]

r1 = x /. FindRoot[f[x] == g[x], {x, -1.1, -1.08}, WorkingPrecision -> 110]

RealDigits[r1] (* A198226 *)

r2 = x /. FindRoot[f[x] == g[x], {x, .62, .63}, WorkingPrecision -> 110]

RealDigits[r2] (* A198227 *)

CROSSREFS

Cf. A197737.

Sequence in context: A086307 A215141 A248951 * A195692 A021088 A021529

Adjacent sequences:  A198223 A198224 A198225 * A198227 A198228 A198229

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Oct 23 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 11 08:50 EDT 2020. Contains 336422 sequences. (Running on oeis4.)