login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198225 Decimal expansion of greatest x having 3*x^2+2x=2*cos(x). 3
5, 0, 0, 8, 6, 6, 3, 1, 0, 2, 5, 3, 0, 1, 1, 7, 6, 9, 7, 9, 0, 8, 0, 2, 7, 5, 4, 6, 9, 4, 6, 5, 6, 3, 3, 0, 3, 2, 1, 5, 5, 6, 9, 7, 4, 9, 5, 5, 9, 5, 6, 2, 7, 5, 7, 4, 5, 2, 1, 3, 3, 0, 3, 1, 2, 7, 4, 0, 4, 8, 0, 4, 4, 3, 8, 4, 7, 3, 5, 1, 5, 1, 5, 2, 3, 9, 2, 8, 1, 5, 2, 3, 5, 5, 3, 9, 3, 0, 5 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A197737 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=0..98.

EXAMPLE

least x: -1.014060582687901072214777706552979973...

greatest x: 0.500866310253011769790802754694656330...

MATHEMATICA

a = 3; b = 2; c = 2;

f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]

Plot[{f[x], g[x]}, {x, -2, 1}]

r1 = x /. FindRoot[f[x] == g[x], {x, -1.02, -1.01}, WorkingPrecision -> 110]

RealDigits[r1]  (* A198224 *)

r2 = x /. FindRoot[f[x] == g[x], {x, .5, .51}, WorkingPrecision -> 110]

RealDigits[r2]  (* A198225 *)

CROSSREFS

Cf. A197737.

Sequence in context: A263496 A308224 A200630 * A256929 A068459 A099222

Adjacent sequences:  A198222 A198223 A198224 * A198226 A198227 A198228

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Oct 22 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 24 12:07 EST 2022. Contains 350536 sequences. (Running on oeis4.)