The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A256929 Decimal expansion of Sum_{k>=1} (zeta(2k)/k)*(1/3)^(2k). 1
 1, 0, 5, 0, 0, 9, 1, 1, 5, 0, 0, 9, 4, 8, 2, 2, 1, 0, 0, 1, 7, 5, 7, 9, 1, 6, 9, 1, 6, 5, 7, 9, 3, 8, 5, 9, 5, 3, 4, 0, 4, 4, 6, 1, 1, 3, 7, 4, 9, 2, 8, 6, 9, 0, 3, 3, 2, 6, 0, 3, 0, 5, 7, 2, 3, 2, 0, 4, 7, 3, 3, 6, 9, 3, 0, 2, 8, 4, 0, 0, 6, 3, 7, 4, 8, 2, 8, 2, 7, 9, 7, 8, 0, 8, 6, 1, 6, 7, 6, 3, 8, 9, 0 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 REFERENCES H. M. Srivastava and Junesang Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Insights (2011) p. 272. LINKS Eric Weisstein's MathWorld, Riemann Zeta Function Wikipedia, Riemann Zeta Function FORMULA Equals log(Gamma(3/4)*Gamma(5/4)). Equals log(Pi/(2*sqrt(2))). Equals -Sum_{k>=1} log(1 - 1/(4*k)^2). - Amiram Eldar, Aug 12 2020 EXAMPLE 0.1050091150094822100175791691657938595340446113749286903326... MATHEMATICA RealDigits[Log[Pi/(2*Sqrt[2])], 10, 103] // First CROSSREFS Cf. A068465, A068467, A093954, A256930. Sequence in context: A308224 A200630 A198225 * A068459 A099222 A341796 Adjacent sequences:  A256926 A256927 A256928 * A256930 A256931 A256932 KEYWORD nonn,cons,easy AUTHOR Jean-François Alcover, Apr 13 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 22:33 EST 2022. Contains 350410 sequences. (Running on oeis4.)