login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341796
Number of ways to write n as an ordered sum of 5 nonzero tetrahedral numbers.
8
1, 0, 0, 5, 0, 0, 10, 0, 0, 15, 0, 0, 25, 0, 0, 31, 0, 0, 30, 5, 0, 35, 20, 0, 30, 30, 0, 20, 40, 0, 20, 65, 0, 10, 65, 0, 5, 70, 10, 5, 90, 30, 0, 70, 30, 1, 85, 40, 0, 80, 60, 0, 50, 50, 0, 70, 90, 10, 50, 90, 20, 50, 80, 10, 60, 130, 20, 65, 70, 20, 65, 90, 30, 50, 110, 70, 65, 100
OFFSET
5,4
LINKS
FORMULA
G.f.: ( Sum_{k>=1} x^binomial(k+2,3) )^5.
MATHEMATICA
nmax = 82; CoefficientList[Series[Sum[x^Binomial[k + 2, 3], {k, 1, nmax}]^5, {x, 0, nmax}], x] // Drop[#, 5] &
PROG
(Magma)
R<x>:=PowerSeriesRing(Integers(), 100);
Coefficients(R!( (&+[x^Binomial(j+2, 3): j in [1..20]])^5 )); // G. C. Greubel, Jul 20 2022
(SageMath)
def f(m, x): return ( sum( x^(binomial(j+2, 3)) for j in (1..20) ) )^m
def A341796_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( f(5, x) ).list()
a=A341796_list(120); a[5:100] # G. C. Greubel, Jul 20 2022
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 19 2021
STATUS
approved