login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198228 Decimal expansion of least x having 3*x^2+2x=4*cos(x). 3
1, 1, 4, 6, 0, 6, 9, 5, 8, 0, 2, 1, 0, 4, 4, 1, 8, 1, 3, 3, 9, 4, 3, 5, 1, 1, 9, 5, 7, 8, 0, 6, 1, 1, 8, 3, 1, 9, 6, 9, 7, 1, 2, 7, 5, 0, 3, 5, 7, 5, 4, 0, 7, 7, 1, 5, 5, 7, 0, 1, 3, 0, 4, 9, 3, 6, 2, 3, 7, 0, 6, 6, 8, 2, 1, 7, 8, 2, 2, 1, 5, 8, 2, 5, 7, 1, 7, 2, 9, 2, 4, 0, 2, 2, 2, 0, 1, 4, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least x: -1.146069580210441813394351195780611...
greatest x: 0.721341307648015582421031722872306448...
MATHEMATICA
a = 3; b = 2; c = 4;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -2, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -1.2, -1.1}, WorkingPrecision -> 110]
RealDigits[r1] (* A198228 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .72, .73}, WorkingPrecision -> 110]
RealDigits[r2] (* A198229 *)
CROSSREFS
Cf. A197737.
Sequence in context: A194183 A011442 A135183 * A200349 A021221 A197006
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 23 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 22:36 EDT 2024. Contains 371917 sequences. (Running on oeis4.)