login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224030
a(n) = |{0<k<n: 2*n+k and 2*n^3+k^3 are both prime}|.
1
0, 1, 0, 0, 2, 2, 1, 2, 2, 2, 2, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 3, 1, 2, 1, 1, 2, 4, 3, 4, 2, 1, 2, 2, 2, 1, 1, 2, 3, 2, 2, 4, 3, 3, 5, 4, 3, 3, 1, 4, 3, 2, 2, 2, 3, 2, 1, 3, 3, 4, 3, 7, 2, 5, 2, 3, 5, 5, 5, 4, 3, 2, 3, 2, 3, 5, 2, 2, 4, 5, 4, 4, 2, 4, 9, 4, 6, 7, 5, 3, 3, 4, 3, 3, 9, 5, 3, 3, 3, 5
OFFSET
1,5
COMMENTS
Conjecture: a(n)>0 for all n>4.
This has been verified for n up to 10^8.
We also conjecture that for any integer n>1 there is an integer 0<k<n such that n^2+k^2 is prime.
LINKS
D. R. Heath-Brown, Primes represented by x^3 + 2y^3. Acta Mathematica 186 (2001), pp. 1-84.
Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arXiv:1211.1588 [math.NT], 2012-2017.
EXAMPLE
a(7) = 1 since 2*7+5 = 19 and 2*7^3+5^3 = 811 are both prime.
a(57) = 1 since 2*57+23 = 137 and 2*57^3+23^3 = 382553 are both prime.
MATHEMATICA
a[n_]:=a[n]=Sum[If[PrimeQ[2n+k]==True&&PrimeQ[2n^3+k^3]==True, 1, 0], {k, 1, n-1}]
Table[a[n], {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Apr 15 2013
STATUS
approved