login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A073747
Decimal expansion of coth(1).
23
1, 3, 1, 3, 0, 3, 5, 2, 8, 5, 4, 9, 9, 3, 3, 1, 3, 0, 3, 6, 3, 6, 1, 6, 1, 2, 4, 6, 9, 3, 0, 8, 4, 7, 8, 3, 2, 9, 1, 2, 0, 1, 3, 9, 4, 1, 2, 4, 0, 4, 5, 2, 6, 5, 5, 5, 4, 3, 1, 5, 2, 9, 6, 7, 5, 6, 7, 0, 8, 4, 2, 7, 0, 4, 6, 1, 8, 7, 4, 3, 8, 2, 6, 7, 4, 6, 7, 9, 2, 4, 1, 4, 8, 0, 8, 5, 6, 3, 0, 2, 9, 4, 6, 7, 9
OFFSET
1,2
COMMENTS
coth(x) = (e^x + e^(-x))/(e^x - e^(-x)).
Because the continued fraction for coth(1) is all positive odd numbers in sequence, the second Mathematica program below also generates the sequence. - Harvey P. Dale, Oct 15 2011
By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 14 2019
REFERENCES
Samuel M. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, p. 218.
LINKS
Hideyuki Ohtsuka, Problem 11853, The American Mathematical Monthly, Vol. 122, No. 7 (2015), p. 700; A Hyperbolic Sine Series, Solutions to Problem 11853 by Tewodros Amdeberhan and Rituraj Nandan, ibid., Vol. 124, No. 5 (2017), p. 469.
Allen Stenger, Experimental math for Math Monthly problems, The American Mathematical Monthly, Vol. 124, No. 2 (2017), pp. 116-131; alternative link.
Eric Weisstein's World of Mathematics, Hyperbolic Cotangent.
Eric Weisstein's World of Mathematics, Hyperbolic Functions.
FORMULA
Equals 1 + Sum_{n>=1} (2^(2*n)*B(2*n))/(2*n)! = 1 + Sum_{n>=1} (-1)^(n+1)*2*(A046988(n+1) / A002432(n+1)). - Terry D. Grant, May 30 2017
Equals 1 + BesselI(3/2, 1)/BesselI(1/2, 1). - Terry D. Grant, Jun 18 2018
Equals 1 + Sum_{k>=1} csch(2^k) (Ohtsuka, 2015; Stenger, 2017). - Amiram Eldar, Oct 04 2021
EXAMPLE
1.31303528549933130363616124693...
MATHEMATICA
RealDigits[Coth[1], 10, 120][[1]] (* or *) RealDigits[ FromContinuedFraction[ Range[1, 1001, 2]], 10, 120][[1]] (* Harvey P. Dale, Oct 15 2011 *) (* see Comments, above, for the second program *)
PROG
(PARI) 1/tanh(1)
CROSSREFS
Cf. A005408 (continued fraction: odd numbers), A073821 (continued fraction exp. is even numbers), A073744 (tanh(1)=1/A073747), A073742 (sinh(1)), A073743 (cosh(1)), A073745 (csch(1)), A073746 (sech(1)), A349004.
Sequence in context: A253626 A112298 A011430 * A349004 A127549 A191009
KEYWORD
cons,nonn
AUTHOR
Rick L. Shepherd, Aug 07 2002
STATUS
approved