OFFSET
1,3
COMMENTS
From Jaroslav Krizek, May 28 2010: (Start)
a(n+1) = numerators of antiharmonic mean of the first n positive integers for n >= 1.
See A169609(n-1) - denominators of antiharmonic mean of the first n positive integers for n >= 1. (End)
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,2,0,0,-1).
FORMULA
From R. J. Mathar, Nov 21 2008: (Start)
a(n) = 2*a(n-3) - a(n-6).
G.f.: x(1+x)(1+5x^2+x^4)/((1-x)^2*(1+x+x^2)^2). (End)
Sum_{k=1..n} a(k) ~ (7/9) * n^2. - Amiram Eldar, Apr 04 2024
EXAMPLE
Fractions begin with 1/6, 1/2, 5/6, 7/6, 3/2, 11/6, 13/6, 5/2, 17/6, 19/6, 7/2, 23/6, ...
MATHEMATICA
Table[Numerator[(2 n - 1)/6], {n, 1, 100}]
LinearRecurrence[{0, 0, 2, 0, 0, -1}, {1, 1, 5, 7, 3, 11}, 100] (* Harvey P. Dale, Feb 24 2015 *)
PROG
(PARI) a(n) = numerator((2*n-1)/3); \\ Altug Alkan, Apr 13 2018
CROSSREFS
KEYWORD
nonn,easy,frac
AUTHOR
Artur Jasinski, Oct 31 2008
EXTENSIONS
Name edited by Altug Alkan, Apr 13 2018
STATUS
approved