login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290052
Number of X-rays of n X n binary matrices with exactly n ones.
4
1, 1, 4, 23, 139, 860, 5393, 34142, 217717, 1396346, 8997695, 58205686, 377775385, 2458841504, 16043226825, 104901986083, 687221188145, 4509605878736, 29636894936761, 195035340954186, 1285062484293880, 8476508261617168, 55969236979211755, 369900194873712830
OFFSET
0,3
COMMENTS
The X-ray of a matrix is defined as the sequence of antidiagonal sums.
LINKS
C. Bebeacua, T. Mansour, A. Postnikov and S. Severini, On the X-rays of permutations, arXiv:math/0506334 [math.CO], 2005.
FORMULA
A019589(n) <= a(n) <= A014062(n).
a(n) ~ c * 3^(3*n) / (2^(2*n) * sqrt(n)), where c = 0.153294749730773567280925277269616968259180871352428154276351832424636097919... - Vaclav Kotesovec, Jul 22 2017
EXAMPLE
a(0) = 1: [].
a(1) = 1: 1.
a(2) = 4: 011, 020, 101, 110.
a(3) = 23: 00021, 00111, 00120, 00201, 00210, 00300, 01011, 01020, 01101, 01110, 01200, 02001, 02010, 02100, 10011, 10020, 10101, 10110, 10200, 11001, 11010, 11100, 12000.
MAPLE
b:= proc(n, i, t) option remember; (m-> `if`(n>m, 0, `if`(n=m, 1,
add(b(n-j, i-t, 1-t), j=0..min(i, n)))))(i*(i+1-t))
end:
a:= n-> b(n$2, 1):
seq(a(n), n=0..30);
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = Function[m, If[n > m, 0, If[n == m, 1, Sum[b[n - j, i - t, 1 - t], {j, 0, Min[i, n]}]]]][i*(i + 1 - t)];
a[n_] := b[n, n, 1];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 06 2017, after Alois P. Heinz *)
CROSSREFS
Main diagonal of A290057.
Sequence in context: A091640 A237362 A067110 * A158197 A356282 A038736
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 19 2017
STATUS
approved