login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290133
Number of unique X-rays of n X n binary matrices with exactly n ones.
3
1, 1, 2, 5, 8, 13, 21, 31, 45, 65, 92, 127, 175, 237, 318, 425, 561, 735, 959, 1241, 1597, 2047, 2607, 3305, 4174, 5247, 6569, 8197, 10189, 12621, 15588, 19189, 23551, 28829, 35189, 42841, 52033, 63039, 76197, 91903, 110603, 132831, 159215, 190463, 227416
OFFSET
0,3
COMMENTS
The X-ray of a matrix is defined as the sequence of antidiagonal sums.
A unique X-ray allows reconstruction of the binary matrix.
LINKS
C. Bebeacua, T. Mansour, A. Postnikov and S. Severini, On the X-rays of permutations, arXiv:math/0506334 [math.CO], 2005.
FORMULA
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(9/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, May 06 2018
EXAMPLE
a(3) = 5: 00021, 00300, 02001, 10020, 12000.
a(4) = 8: 0000301, 0004000, 0030001, 0200020, 1000021, 1000300, 1030000, 1200001.
MAPLE
b:= proc(n, i) option remember; (m-> `if`(n>m, 0,
`if`(n=m or n=0, 1, add(b(n-i*j, min(n-i*j, i-1))*
`if`(j=1, 2, 1), j=0..min(2, n/i)))))(i*(i+1))
end:
a:= n-> `if`(n=0, 1, 1+b(n, n-1)) :
seq(a(n), n=0..60);
MATHEMATICA
b[n_, i_] := b[n, i] = Function [m, If[n > m, 0, If[n == m || n == 0, 1, Sum[b[n - i*j, Min[n - i*j, i - 1]]*If[j == 1, 2, 1], {j, 0, Min[2, n/i]} ]]]][i*(i + 1)];
a[n_] := If[n == 0, 1, 1 + b[n, n - 1]] ;
Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Nov 07 2017, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A025279 A169954 A015724 * A089897 A076180 A326506
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 20 2017
STATUS
approved