login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A290130
Numbers n > 0 such that either 3n+4, n-2, n+2, n+4 or 3n+5, n-1, n+1, n+5 are all primes.
1
6, 9, 12, 18, 42, 69, 102, 312, 348, 459, 642, 858, 1089, 1302, 1428, 1482, 1665, 2139, 2238, 2685, 2688, 3255, 3462, 3465, 3528, 3849, 4002, 4788, 5415, 6825, 7755, 7875, 8862, 9009, 9435, 10458, 11115, 11172, 11778, 11829, 13005, 13692, 14628, 18045, 19422, 19992, 21018, 21315, 21558
OFFSET
1,1
COMMENTS
In all cases a is multiple of 3, c = a + 3 and b = a + 1 or 2.
First triples are: {6, 8, 9}, {9, 10, 12}, {12, 14, 15}, {18, 20, 21}, {42, 44, 45}, {69, 70, 72}, {102, 104, 105}, {312, 314, 315}, {348, 350, 351}, {459, 460, 462}, {642, 644, 645}, {858, 860, 861}.
LINKS
MAPLE
filter:= proc(n) if n::even then andmap(isprime, [3*n+5, n+5, n+1, n-1]) else andmap(isprime, [3*n+4, n+4, n+2, n-2]) fi end proc:
select(filter, [seq(i, i=3..30000, 3)]); # Robert Israel, Aug 01 2017
MATHEMATICA
s = {}; Do[If[b + c > a && a + b > c && a + c > b && PrimeQ[a + b + c] && PrimeQ[-a + b + c] && PrimeQ[a - b + c] && PrimeQ[a + b - c], AppendTo[s, a}]], {a, 1000}, {b, a + 1, a + 2}, {c, b + 1, a+3}]; s
apQ[n_]:=AllTrue[{3n+4, n-2, n+2, n+4}, PrimeQ]||AllTrue[{3n+5, n-1, n+1, n+5}, PrimeQ]; Select[Range[22000], apQ] (* Harvey P. Dale, Nov 08 2024 *)
CROSSREFS
Sequence in context: A315959 A023386 A036999 * A118782 A246356 A335065
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 20 2017
EXTENSIONS
Definition simplified by Robert Israel, Aug 01 2017
STATUS
approved