login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290132
The number of edges in a graph induced by a regular drawing of K_{n,n}.
6
1, 6, 24, 74, 170, 362, 642, 1110, 1766, 2706, 3894, 5558, 7602, 10326, 13562, 17510, 22178, 28006, 34634, 42722, 51922, 62570, 74450, 88462, 103994, 121862, 141482, 163610, 187886, 215578, 245430, 279198, 315958, 356390, 399830, 447542, 498626, 555278, 615698, 681206
OFFSET
1,2
LINKS
M. Griffiths, Counting the regions in a regular drawing of K_{n,n}, J. Int. Seq. 13 (2010) # 10.8.5, Table 2.
FORMULA
a(n) = 2*n + A290131(n) + A159065(n) - 1.
MAPLE
A290132 := proc(n)
2*n+A290131(n)+A159065(n)-1 ;
end proc:
seq(A290132(n), n=1..40);
MATHEMATICA
b[n_] := Sum[(n-i+1)(n-j+1) Boole[GCD[i, j] == 1], {i, n}, {j, n}];
A290131[n_] := b[n-1] + (n-1)^2;
A159065[n_] := Module[{x, y, s1 = 0, s2 = 0}, For[x = 1, x <= n - 1, x++, For[y = 1, y <= n - 1, y++, If[GCD[x, y] == 1, s1 += (n - x)(n - y); If[2x <= n - 1 && 2y <= n - 1, s2 += (n - 2x)(n - 2y)]]]]; s1 - s2];
a[n_] := 2n + A290131[n] + A159065[n] - 1;
Table[a[n], {n, 1, 40}] (* Jean-François Alcover, May 24 2023, after Joerg Arndt in A159065 *)
PROG
(Python)
from math import gcd
def a115004(n):
r=0
for a in range(1, n + 1):
for b in range(1, n + 1):
if gcd(a, b)==1:r+=(n + 1 - a)*(n + 1 - b)
return r
def a159065(n):
c=0
for a in range(1, n):
for b in range(1, n):
if gcd(a, b)==1:
c+=(n - a)*(n - b)
if 2*a<n and 2*b<n:c-=(n - 2*a)*(n - 2*b)
return c
def a290131(n): return a115004(n - 1) + (n - 1)**2
def a(n): return 2*n + a290131(n) + a159065(n) - 1
print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 20 2017
CROSSREFS
Sequence in context: A090574 A375196 A294842 * A297713 A225383 A257956
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Jul 20 2017
STATUS
approved