login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The number of edges in a graph induced by a regular drawing of K_{n,n}.
6

%I #26 May 24 2023 07:33:41

%S 1,6,24,74,170,362,642,1110,1766,2706,3894,5558,7602,10326,13562,

%T 17510,22178,28006,34634,42722,51922,62570,74450,88462,103994,121862,

%U 141482,163610,187886,215578,245430,279198,315958,356390,399830,447542,498626,555278,615698,681206

%N The number of edges in a graph induced by a regular drawing of K_{n,n}.

%H Chai Wah Wu, <a href="/A290132/b290132.txt">Table of n, a(n) for n = 1..10000</a>

%H M. Griffiths, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Griffiths2/griffiths.html">Counting the regions in a regular drawing of K_{n,n}</a>, J. Int. Seq. 13 (2010) # 10.8.5, Table 2.

%F a(n) = 2*n + A290131(n) + A159065(n) - 1.

%p A290132 := proc(n)

%p 2*n+A290131(n)+A159065(n)-1 ;

%p end proc:

%p seq(A290132(n),n=1..40);

%t b[n_] := Sum[(n-i+1)(n-j+1) Boole[GCD[i, j] == 1], {i, n}, {j, n}];

%t A290131[n_] := b[n-1] + (n-1)^2;

%t A159065[n_] := Module[{x, y, s1 = 0, s2 = 0}, For[x = 1, x <= n - 1, x++, For[y = 1, y <= n - 1, y++, If[GCD[x, y] == 1, s1 += (n - x)(n - y); If[2x <= n - 1 && 2y <= n - 1, s2 += (n - 2x)(n - 2y)]]]]; s1 - s2];

%t a[n_] := 2n + A290131[n] + A159065[n] - 1;

%t Table[a[n], {n, 1, 40}] (* _Jean-François Alcover_, May 24 2023, after _Joerg Arndt_ in A159065 *)

%o (Python)

%o from math import gcd

%o def a115004(n):

%o r=0

%o for a in range(1, n + 1):

%o for b in range(1, n + 1):

%o if gcd(a, b)==1:r+=(n + 1 - a)*(n + 1 - b)

%o return r

%o def a159065(n):

%o c=0

%o for a in range(1, n):

%o for b in range(1, n):

%o if gcd(a, b)==1:

%o c+=(n - a)*(n - b)

%o if 2*a<n and 2*b<n:c-=(n - 2*a)*(n - 2*b)

%o return c

%o def a290131(n): return a115004(n - 1) + (n - 1)**2

%o def a(n): return 2*n + a290131(n) + a159065(n) - 1

%o print([a(n) for n in range(1, 51)]) # _Indranil Ghosh_, Jul 20 2017

%Y Cf. A159065, A290131.

%K nonn,easy

%O 1,2

%A _R. J. Mathar_, Jul 20 2017