The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A038736 T(3*n + 1, n + 1), array T as in A038792. 1
 1, 4, 23, 141, 888, 5676, 36622, 237821, 1551727, 10161409, 66732392, 439267525, 2897064773, 19137833146, 126599140313, 838477244705, 5559158604616, 36891869005316, 245025744759152, 1628602268643928, 10832010390274304, 72088640151558145, 480026332241373281, 3198037386794785777, 21315944308822771118 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Table of n, a(n) for n=0..24. FORMULA G.f.: (g-1)^2/((1-3*g)*(g^2-3*g+1)) where g*(1-g)^2 = x. - Mark van Hoeij, Nov 10 2011 a(n) = A134511(4n,2n). - Alois P. Heinz, Mar 02 2018 a(n) = Sum_{j=0..n} binomial(4*n-j, j). - Petros Hadjicostas, Sep 04 2019 a(n) = hypergeom([1/2 - 2*n, -2*n], [-4*n], -4) - binomial(3*n - 1, n + 1)* hypergeom([1, 1 - n, 3/2 - n], [1 - 3*n, n + 2], -4) for n > 0. - Peter Luschny, Sep 04 2019 a(n) ~ 3^(3*n + 1/2) / (sqrt(Pi*n) * 2^(2*n-1)). - Vaclav Kotesovec, Sep 04 2019 MAPLE a := n -> `if`(n=0, 1, hypergeom([1/2 - 2*n, -2*n], [-4*n], -4) - binomial(3*n - 1, n + 1)*hypergeom([1, 1 - n, 3/2 - n], [1 - 3*n, n + 2], -4)): seq(simplify(a(n)), n = 0..24); # Peter Luschny, Sep 04 2019 CROSSREFS Cf. A038792, A134511. Sequence in context: A290052 A158197 A356282 * A091642 A162561 A277921 Adjacent sequences: A038733 A038734 A038735 * A038737 A038738 A038739 KEYWORD nonn AUTHOR Clark Kimberling, May 02 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 21:02 EDT 2024. Contains 372952 sequences. (Running on oeis4.)