The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A038736 T(3*n + 1, n + 1), array T as in A038792. 1
1, 4, 23, 141, 888, 5676, 36622, 237821, 1551727, 10161409, 66732392, 439267525, 2897064773, 19137833146, 126599140313, 838477244705, 5559158604616, 36891869005316, 245025744759152, 1628602268643928, 10832010390274304, 72088640151558145, 480026332241373281, 3198037386794785777, 21315944308822771118 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
G.f.: (g-1)^2/((1-3*g)*(g^2-3*g+1)) where g*(1-g)^2 = x. - Mark van Hoeij, Nov 10 2011
a(n) = A134511(4n,2n). - Alois P. Heinz, Mar 02 2018
a(n) = Sum_{j=0..n} binomial(4*n-j, j). - Petros Hadjicostas, Sep 04 2019
a(n) = hypergeom([1/2 - 2*n, -2*n], [-4*n], -4) - binomial(3*n - 1, n + 1)* hypergeom([1, 1 - n, 3/2 - n], [1 - 3*n, n + 2], -4) for n > 0. - Peter Luschny, Sep 04 2019
a(n) ~ 3^(3*n + 1/2) / (sqrt(Pi*n) * 2^(2*n-1)). - Vaclav Kotesovec, Sep 04 2019
MAPLE
a := n -> `if`(n=0, 1, hypergeom([1/2 - 2*n, -2*n], [-4*n], -4) - binomial(3*n - 1, n + 1)*hypergeom([1, 1 - n, 3/2 - n], [1 - 3*n, n + 2], -4)):
seq(simplify(a(n)), n = 0..24); # Peter Luschny, Sep 04 2019
CROSSREFS
Sequence in context: A290052 A158197 A356282 * A091642 A162561 A277921
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 02 2000
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 29 21:02 EDT 2024. Contains 372952 sequences. (Running on oeis4.)