Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Sep 04 2019 02:24:26
%S 1,4,23,141,888,5676,36622,237821,1551727,10161409,66732392,439267525,
%T 2897064773,19137833146,126599140313,838477244705,5559158604616,
%U 36891869005316,245025744759152,1628602268643928,10832010390274304,72088640151558145,480026332241373281,3198037386794785777,21315944308822771118
%N T(3*n + 1, n + 1), array T as in A038792.
%F G.f.: (g-1)^2/((1-3*g)*(g^2-3*g+1)) where g*(1-g)^2 = x. - _Mark van Hoeij_, Nov 10 2011
%F a(n) = A134511(4n,2n). - _Alois P. Heinz_, Mar 02 2018
%F a(n) = Sum_{j=0..n} binomial(4*n-j, j). - _Petros Hadjicostas_, Sep 04 2019
%F a(n) = hypergeom([1/2 - 2*n, -2*n], [-4*n], -4) - binomial(3*n - 1, n + 1)* hypergeom([1, 1 - n, 3/2 - n], [1 - 3*n, n + 2], -4) for n > 0. - _Peter Luschny_, Sep 04 2019
%F a(n) ~ 3^(3*n + 1/2) / (sqrt(Pi*n) * 2^(2*n-1)). - _Vaclav Kotesovec_, Sep 04 2019
%p a := n -> `if`(n=0, 1, hypergeom([1/2 - 2*n, -2*n], [-4*n], -4) - binomial(3*n - 1, n + 1)*hypergeom([1, 1 - n, 3/2 - n], [1 - 3*n, n + 2], -4)):
%p seq(simplify(a(n)), n = 0..24); # _Peter Luschny_, Sep 04 2019
%Y Cf. A038792, A134511.
%K nonn
%O 0,2
%A _Clark Kimberling_, May 02 2000