login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A066875
Numbers k such that prime(k+1) + prime(k-1) = 2*prime(k).
3
3, 16, 37, 40, 47, 55, 56, 74, 103, 108, 111, 119, 130, 161, 165, 185, 188, 195, 200, 219, 240, 272, 273, 292, 340, 359, 388, 420, 427, 465, 466, 509, 521, 554, 600, 606, 622, 630, 634, 668, 683, 684, 703, 710, 711, 734, 762, 792, 814, 822, 823, 830, 831, 883
OFFSET
1,1
COMMENTS
The indices of primes that are equidistant from the two primes surrounding them. - Harvey P. Dale, May 16 2013
Indices of balanced primes (A006562). - Zak Seidov, Mar 03 2019
LINKS
FORMULA
a(n) = primepi(A006562(n)) = A000720(A006562(n)).
MATHEMATICA
Select[Range[2, 1000], Prime[ # ] == (Prime[ # + 1] + Prime[ # - 1])/2 &] (* Ray Chandler, Jan 09 2007 *)
PrimePi/@Transpose[Select[Partition[Prime[Range[900]], 3, 1], Length[ Union[ Differences[ #]]]==1&]][[2]] (* Harvey P. Dale, May 16 2013 *)
PROG
(PARI) isok(k) = { k > 1 && prime(k+1) + prime(k-1) == 2*prime(k) } \\ Harry J. Smith, Apr 03 2010
(Magma) [n: n in [2..1000] | 2*NthPrime(n) eq (NthPrime(n-1) + NthPrime(n+1))]; // Vincenzo Librandi, Apr 09 2015
CROSSREFS
Cf. A000720 (primepi), A006562 (balanced primes).
Sequence in context: A217130 A173390 A173891 * A294419 A196596 A196573
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Jan 21 2002
EXTENSIONS
Corrected by Ray Chandler, Jan 09 2007
STATUS
approved