login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A294419
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + 2*b(n-1) + 2*b(n-2), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
2
1, 3, 16, 37, 75, 138, 243, 415, 696, 1153, 1895, 3098, 5047, 8203, 13314, 21587, 34975, 56640, 91697, 148423, 240210, 388727, 629035, 1017864, 1647005, 2664979, 4312098, 6977195, 11289415, 18266736, 29556281, 47823151, 77379570, 125202863, 202582581
OFFSET
0,2
COMMENTS
The complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294414 for a guide to related sequences.
Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2, the golden ratio.
LINKS
Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
EXAMPLE
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that
a(2) = a(1) + a(0) + 2*b(1) + 2*b(0) = 16
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17,...)
MATHEMATICA
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
a[n_] := a[n] = a[n - 1] + a[n - 2] + 2 b[n - 1] + 2 b[n - 2];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294419 *)
Table[b[n], {n, 0, 10}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 31 2017
STATUS
approved