login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A294418 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + 2*b(n-2), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4. 2
1, 3, 12, 28, 56, 103, 181, 309, 518, 858, 1411, 2309, 3763, 6118, 9930, 16100, 26085, 42243, 68389, 110696, 179152, 289918, 469143, 759137, 1228359, 1987579, 3216026, 5203696, 8419816, 13623609, 22043525, 35667237, 57710868, 93378214, 151089194, 244467523 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The complementary sequences a() and b() are uniquely determined by the titular equation and initial values.  See A294414 for a guide to related sequences.

Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2, the golden ratio.

LINKS

Table of n, a(n) for n=0..35.

Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.

EXAMPLE

a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that

a(2)  = a(1) + a(0) + b(1) + 2*b(0) = 12

Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14,...)

MATHEMATICA

mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;

a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;

a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + 2 b[n - 2];

b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];

Table[a[n], {n, 0, 40}]  (* A294418 *)

Table[b[n], {n, 0, 10}]

CROSSREFS

Cf. A293076, A293765, A294414.

Sequence in context: A237426 A066643 A140065 * A115549 A005995 A034503

Adjacent sequences:  A294415 A294416 A294417 * A294419 A294420 A294421

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Oct 31 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 20 18:41 EST 2018. Contains 299381 sequences. (Running on oeis4.)