login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A294415 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + 1, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4. 2
1, 3, 11, 24, 47, 85, 148, 251, 419, 693, 1138, 1859, 3027, 4918, 7979, 12933, 20950, 33923, 54915, 88882, 143843, 232774, 376669, 609497, 986222, 1595777, 2582059, 4177898, 6760021, 10937985, 17698074, 28636129, 46334275, 74970478, 121304829, 196275385 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
The complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294414 for a guide to related sequences.
Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2, the golden ratio.
LINKS
Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
EXAMPLE
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that
a(2) = a(1) + a(0) + b(1) + b(0) + 1 = 11
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14,...)
MATHEMATICA
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] + 1;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294415 *)
Table[b[n], {n, 0, 10}]
CROSSREFS
Sequence in context: A293414 A212252 A295622 * A141595 A112051 A231068
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 31 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 19:59 EDT 2024. Contains 373507 sequences. (Running on oeis4.)