The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A295622 Number of nonequivalent dissections of an n-gon into 3 polygons by nonintersecting diagonals rooted at a cell up to rotation. 2
 3, 11, 24, 46, 75, 117, 168, 236, 315, 415, 528, 666, 819, 1001, 1200, 1432, 1683, 1971, 2280, 2630, 3003, 3421, 3864, 4356, 4875, 5447, 6048, 6706, 7395, 8145, 8928, 9776, 10659, 11611, 12600, 13662, 14763, 15941, 17160, 18460, 19803, 21231, 22704, 24266 (list; graph; refs; listen; history; text; internal format)
 OFFSET 5,1 LINKS Andrew Howroyd, Table of n, a(n) for n = 5..500 P. Lisonek, Closed forms for the number of polygon dissections, Journal of Symbolic Computation 20 (1995), 595-601. Ronald C. Read, On general dissections of a polygon, Aequat. math. 18 (1978) 370-388. FORMULA Conjectures from Colin Barker, Nov 25 2017: (Start) G.f.: x^5*(3 + 5*x - x^2 - x^3) / ((1 - x)^4*(1 + x)^2). a(n) = (n-4)*(-5 + (-1)^n - 4*n + 2*n^2) / 8 for n>4. a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) for n>10. (End) a(n) = Sum_{k=0..n-5} f(k), where f(n) = Sum_{k=0..n} 3 + lcm(k, 2)) (conjecture). - Jon Maiga, Nov 28 2018 PROG (PARI) \\ See A003442 for DissectionsModCyclicRooted() { my(v=DissectionsModCyclicRooted(apply(i->y + O(y^4), [1..40]))); apply(p->polcoeff(p, 3), v[5..#v]) } CROSSREFS Cf. A003442, A003451, A003452, A003453. Sequence in context: A293404 A293414 A212252 * A294415 A141595 A112051 Adjacent sequences: A295619 A295620 A295621 * A295623 A295624 A295625 KEYWORD nonn AUTHOR Andrew Howroyd, Nov 24 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 12 13:39 EDT 2024. Contains 373331 sequences. (Running on oeis4.)