login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097566
Number of partitions p of n for which Odd(p) = Odd(p') (mod 4), where p' is the conjugate of p.
4
1, 1, 0, 1, 5, 5, 1, 5, 20, 20, 6, 20, 65, 65, 25, 66, 185, 185, 85, 190, 481, 482, 250, 501, 1165, 1170, 666, 1230, 2666, 2685, 1646, 2850, 5827, 5887, 3830, 6303, 12251, 12415, 8487, 13395, 24912, 25323, 18052, 27507, 49215, 50176, 37072, 54832, 94781, 96905
OFFSET
0,5
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Odd(p) is the number of odd parts of a partition p. a(n) is denoted t(n) in Problem 10969.
LINKS
George E. Andrews, On a Partition Function of Richard Stanley, The Electronic Journal of Combinatorics, Volume 11, Issue 2 (2004-6) (The Stanley Festschrift volume), Research Paper #R1.
M. Ishikawa and J. Zeng, The Andrews-Stanley partition function and Al-Salam-Chihara polynomials, Disc. Math., 309 (2009), 151-175. (See t(n) p. 151. Note that there is a typo in the g.f. for f(n) - see A144558.) [Added by N. J. A. Sloane, Jan 25 2009.]
Andrew V. Sills, A Combinatorial proof of a partition identity of Andrews and Stanley, International Journal of Mathematics and Mathematical Sciences, Volume 2004, Issue 47, Pages 2495-2501.
R. P. Stanley, Problem 10969, Amer. Math. Monthly, 109 (2002), 760. as mentioned in link.
FORMULA
From Michael Somos, May 04 2011: (Start)
Expansion of q^(1/24) * eta(q^2)^2 * eta(q^16)^5 / (eta(q) * eta(q^4)^5 * eta(q^32)^2) in powers of q.
Expansion of phi(x^8) / (phi(x^2) * f(-x)) in powers of x where phi(), f() are Ramanujan theta functions.
Euler transform of period 32 sequence [ 1, -1, 1, 4, 1, -1, 1, 4, 1, -1, 1, 4, 1, -1, 1, -1, 1, -1, 1, 4, 1, -1, 1, 4, 1, -1, 1, 4, 1, -1, 1, 1, ...].
G.f.: theta_3(x^8) / (theta_3(x^2) * Product_{k>0} (1 - x^k)) = A000041(x) * A112128(x^2).
a(n) = (A000041(n) + A085261(n)) / 2.
(End)
EXAMPLE
G.f. = 1 + x + x^3 + 5*x^4 + 5*x^5 + x^6 + 5*x^7 + 20*x^8 + 20*x^9 + 6*x^10 + ...
G.f. = 1/q + q^23 + q^71 + 5*q^95 + 5*q^119 + q^143 + 5*q^167 + 20*q^191 + 20*q^215 + ...
a(5) = 5 because only the partitions {5}, {3,2}, {3,1,1}, {2,2,1}, {1,1,1,1,1} have conjugates resp. {1,1,1,1,1}, {2,2,1}, {3,1,1}, {3,2}, {5} with matching counts of odd elements (resp. (1,5), (1,1), (3,3), (1,1), (5,1) being congruent modulo 4 ).
MAPLE
with(combinat); t1:=mul( (1+q^(2*n-1))/((1-q^(4*n))*(1+q^(4*n-2))^2), n=1..100): t2:=series(t1, q, 100): f:=n->coeff(t2, q, n); p:=numbpart; t:=n->(p(n)+f(n))/2; # N. J. A. Sloane, Jan 25 2009
MATHEMATICA
fStanley[n_Integer]:=Product[(1+q^(2i-1))/(1-q^(4i))/(1+q^(4i-2))^2, {i, n}]; Table[PartitionsP[n]/2+1/2*Coefficient[Series[fStanley[n], {q, 0, n+1}], q^n], {n, 64}] or Table[Count[Partitions[n], q_/; Mod[Count[q, w_/; OddQ[w]]- Count[TransposePartition[q], w_/; OddQ[w]], 4]===0], {n, 24}]
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x^8] / (EllipticTheta[ 3, 0, x^2] QPochhammer[ x]), {x, 0, n}]; (* Michael Somos, Jun 01 2014 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^16 + A)^5 / (eta(x + A) * eta(x^4 + A)^5 * eta(x^32 + A)^2), n))}; /* Michael Somos, May 04 2011 */
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Wouter Meeussen, Aug 28 2004
STATUS
approved