The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097564 a(n) = (a(n-1) mod 2)*a(n-1) + a(n-2) with a(0)=0, a(1)=1. 1
 0, 1, 1, 2, 1, 3, 4, 3, 7, 10, 7, 17, 24, 17, 41, 58, 41, 99, 140, 99, 239, 338, 239, 577, 816, 577, 1393, 1970, 1393, 3363, 4756, 3363, 8119, 11482, 8119, 19601, 27720, 19601, 47321, 66922, 47321, 114243, 161564, 114243, 275807, 390050, 275807, 665857 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS The sequences a(2), a(5), ... a(1+3*n) ... and a(4), a(7), ... a(4 + 3n) ... are both A001333 (numerators of continued fraction convergents to sqrt(2)). The sequence a(0), a(3), a(6), ... a(3+3*n) ... is twice A000129 (the Pell nos. or the denominators of continued fraction convergents to sqrt(2)., also is A052542 starting w/ offset 1. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 D. Panario, M. Sahin, and Q. Wang, A family of Fibonacci-like conditional sequences, INTEGERS, Vol. 13, 2013, #A78. Index entries for linear recurrences with constant coefficients, signature (0,0,2,0,0,1). FORMULA From Colin Barker, Jun 01 2016: (Start) a(n) = 2*a(n-3) + a(n-6) for n>5. G.f.: x*(1+x+2*x^2-x^3+x^4) / (1-2*x^3-x^6). (End) MAPLE m:=50; S:=series( x*(1+x+2*x^2-x^3+x^4)/(1-2*x^3-x^6), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Apr 20 2021 MATHEMATICA nxt[{a_, b_}]:={b, Mod[b, 2]*b+a}; NestList[nxt, {0, 1}, 50][[All, 1]] (* or *) LinearRecurrence[{0, 0, 2, 0, 0, 1}, {0, 1, 1, 2, 1, 3}, 50] (* Harvey P. Dale, Aug 15 2017 *) PROG (PARI) concat(0, Vec(x*(1+x+2*x^2-x^3+x^4)/(1-2*x^3-x^6) + O(x^100))) \\ Colin Barker, Jun 02 2016 (Magma) [n le 2 select n-1 else (Self(n-1) mod 2)*Self(n-1)+Self(n-2): n in [1..50]]; // Bruno Berselli, Jun 02 2016 (Sage) def A097564_list(prec): P. = PowerSeriesRing(ZZ, prec) return P( x*(1+x+2*x^2-x^3+x^4)/(1-2*x^3-x^6) ).list() A097564_list(50) # G. C. Greubel, Apr 20 2021 CROSSREFS Sequence in context: A133310 A077608 A002124 * A345233 A128270 A151550 Adjacent sequences: A097561 A097562 A097563 * A097565 A097566 A097567 KEYWORD nonn,easy AUTHOR Gerald McGarvey, Aug 27 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 28 03:48 EDT 2023. Contains 361577 sequences. (Running on oeis4.)