login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077608
Number of compositions of n into twin primes (i.e., primes that are members of a twin prime pair, like 3, 5, 7, 11, 13, but not 2 or 23).
9
1, 0, 0, 1, 0, 1, 1, 1, 2, 1, 3, 4, 3, 7, 7, 8, 14, 15, 21, 28, 33, 47, 58, 75, 103, 125, 167, 220, 275, 370, 474, 610, 806, 1028, 1347, 1752, 2253, 2954, 3812, 4944, 6451, 8329, 10841, 14077, 18226, 23720, 30745, 39903, 51857, 67214, 87313, 113340, 147017, 190974
OFFSET
0,9
LINKS
Iain Fox, Table of n, a(n) for n = 0..8834 (first 1001 terms from Alois P. Heinz)
P. Flajolet, Publications
FORMULA
G.f.: 1/(1 - Sum_{k>=1} x^A001097(k)). - Andrew Howroyd, Dec 28 2017
EXAMPLE
a(15) = 8 since 15 = 11+7 = 7+11 = 5+13 = 13+5 = 3+5+7 = 3+7+5 = 5+3+7 = 5+7+3 = 7+3+5 = 7+5+3 and 3,5,7,11 belong to twin pairs.
MAPLE
A077608 := proc(n) coeff(series(1/(1-add(z^numtheory[ithprime](j)* subs([true=1, false=0], evalb(isprime(ithprime(j)-2) or isprime(ithprime(j)+2))), j=2..n+2)), z=0, n+1), z, n): end;
MATHEMATICA
a[n_] := Coefficient[Series[ 1/(1 - Sum[z^Prime[j]*Boole[ PrimeQ[Prime[j] - 2] || PrimeQ[ Prime[j] + 2]], {j, 2, n + 2}]), {z, 0, n + 1}], z, n]; Table[a[n], {n, 0, 53}] (* Jean-François Alcover, Nov 09 2012, after Maple *)
PROG
(PARI)
ok(n)={isprime(n) && (isprime(n-2) || isprime(n+2))}
{my(n=60); Vec(1/(1-sum(k=1, n, if(ok(k), x^k, 0))) + O(x*x^n))} \\ Andrew Howroyd, Dec 28 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Philippe Flajolet, Nov 11 2002
STATUS
approved