OFFSET
0,3
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
George E. Andrews, On a Partition Function of Richard Stanley, The Electronic Journal of Combinatorics, Volume 11, Issue 2 (2004-6) (The Stanley Festschrift volume), #R1.
M. Ishikawa and J. Zeng, The Andrews-Stanley partition function and Al-Salam-Chihara polynomials, Disc. Math., 309 (2009), 151-175. (See t(n) p. 151. Note that there is a typo in the g.f. for f(n) - see A144558.) [Added by N. J. A. Sloane, Jan 25 2009.]
O. P. Lossers, Comparing Odd Parts in Conjugate Partitions: Solution 10969, Amer. Math. Monthly, 111 (Jun-Jul 2004), pp. 536-539.
Michael Somos, Introduction to Ramanujan theta functions
R. P. Stanley, Problem 10969, Amer. Math. Monthly, 109 (2002), 760.
FORMULA
Expansion of psi(x) / f(x^2)^2 in powers of x where psi(), f() are Ramanujan theta functions. - Michael Somos, Sep 02 2014
Expansion of q^(1/24) * eta(q^2)^4 * eta(q^8)^2 / (eta(q) * eta(q^4)^6) in powers of q.
Euler transform of period 8 sequence [1, -3, 1, 3, 1, -3, 1, 1, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (2304 t)) = 24^(-1/2) (t/i)^(-1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A246712. - Michael Somos, Sep 02 2014
G.f.: Product_{k>0} (1 + x^(2*k - 1)) / ((1 - x^(4*k)) * (1 + x^(4*k - 2))^2).
EXAMPLE
G.f. = 1 + x - 2*x^2 - x^3 + 5*x^4 + 3*x^5 - 9*x^6 - 5*x^7 + 18*x^8 + 10*x^9 - ...
G.f. = 1/q + q^23 - 2*q^47 - q^71 + 5*q^95 + 3*q^119 - 9*q^143 - 5*q^167 + 18*q^191 + ...
MAPLE
t1:=mul( (1+q^(2*n-1))/((1-q^(4*n))*(1+q^(4*n-2))^2), n=1..100): t2:=series(t1, q, 100): f:=n->coeff(t2, q, n); # N. J. A. Sloane, Jan 25 2009
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] / EllipticTheta[ 3, 0, x^2], {x, 0, n}]; (* Michael Somos, Jun 01 2014 *)
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^(1/2)] / (2 x^(1/8) QPochhammer[ -x^2]^2), {x, 0, n}]; (* Michael Somos, Sep 02 2014 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^8 + A)^2 / eta(x + A) / eta(x^4 + A)^6, n))};
(PARI) {a(n) = polcoeff( prod( k=1, ( n+1)\2, 1 + x^(2*k - 1), 1 + x * O(x^n)) / prod(k=1, (n+2)\4, (1 - x^(4*k)) * (1 + x^(4*k - 2))^2, 1 + x * O(x^n)), n)};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jun 23 2003
STATUS
approved