login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085261
Expansion of chi(x) / phi(x^2) in powers of x where phi(), chi() are Ramanujan theta functions.
5
1, 1, -2, -1, 5, 3, -9, -5, 18, 10, -30, -16, 53, 29, -85, -44, 139, 73, -215, -110, 335, 172, -502, -253, 755, 382, -1104, -550, 1614, 805, -2312, -1142, 3305, 1631, -4650, -2277, 6525, 3193, -9041, -4395, 12486, 6063, -17070, -8247, 23255, 11218, -31414, -15090, 42289, 20285
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
George E. Andrews, On a Partition Function of Richard Stanley, The Electronic Journal of Combinatorics, Volume 11, Issue 2 (2004-6) (The Stanley Festschrift volume), #R1.
M. Ishikawa and J. Zeng, The Andrews-Stanley partition function and Al-Salam-Chihara polynomials, Disc. Math., 309 (2009), 151-175. (See t(n) p. 151. Note that there is a typo in the g.f. for f(n) - see A144558.) [Added by N. J. A. Sloane, Jan 25 2009.]
O. P. Lossers, Comparing Odd Parts in Conjugate Partitions: Solution 10969, Amer. Math. Monthly, 111 (Jun-Jul 2004), pp. 536-539.
R. P. Stanley, Problem 10969, Amer. Math. Monthly, 109 (2002), 760.
FORMULA
Expansion of psi(x) / f(x^2)^2 in powers of x where psi(), f() are Ramanujan theta functions. - Michael Somos, Sep 02 2014
Expansion of q^(1/24) * eta(q^2)^4 * eta(q^8)^2 / (eta(q) * eta(q^4)^6) in powers of q.
Euler transform of period 8 sequence [1, -3, 1, 3, 1, -3, 1, 1, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (2304 t)) = 24^(-1/2) (t/i)^(-1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A246712. - Michael Somos, Sep 02 2014
G.f.: Product_{k>0} (1 + x^(2*k - 1)) / ((1 - x^(4*k)) * (1 + x^(4*k - 2))^2).
EXAMPLE
G.f. = 1 + x - 2*x^2 - x^3 + 5*x^4 + 3*x^5 - 9*x^6 - 5*x^7 + 18*x^8 + 10*x^9 - ...
G.f. = 1/q + q^23 - 2*q^47 - q^71 + 5*q^95 + 3*q^119 - 9*q^143 - 5*q^167 + 18*q^191 + ...
MAPLE
t1:=mul( (1+q^(2*n-1))/((1-q^(4*n))*(1+q^(4*n-2))^2), n=1..100): t2:=series(t1, q, 100): f:=n->coeff(t2, q, n); # N. J. A. Sloane, Jan 25 2009
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] / EllipticTheta[ 3, 0, x^2], {x, 0, n}]; (* Michael Somos, Jun 01 2014 *)
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^(1/2)] / (2 x^(1/8) QPochhammer[ -x^2]^2), {x, 0, n}]; (* Michael Somos, Sep 02 2014 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^8 + A)^2 / eta(x + A) / eta(x^4 + A)^6, n))};
(PARI) {a(n) = polcoeff( prod( k=1, ( n+1)\2, 1 + x^(2*k - 1), 1 + x * O(x^n)) / prod(k=1, (n+2)\4, (1 - x^(4*k)) * (1 + x^(4*k - 2))^2, 1 + x * O(x^n)), n)};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jun 23 2003
STATUS
approved