login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A114901 Number of compositions of n such that each part is adjacent to an equal part. 13
1, 0, 1, 1, 2, 1, 5, 3, 10, 10, 21, 22, 49, 51, 105, 126, 233, 292, 529, 678, 1181, 1585, 2654, 3654, 6016, 8416, 13606, 19395, 30840, 44517, 70087, 102070, 159304, 233941, 362429, 535520, 825358, 1225117, 1880220, 2801749, 4285086, 6404354, 9769782, 14634907 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..4000

N. J. A. Sloane, Transforms

FORMULA

INVERT(iMOEBIUS(iINVERT(A000012 shifted right 2 places)))

EXAMPLE

The 5 compositions of 6 are 3+3, 2+2+2, 2+2+1+1, 1+1+2+2, 1+1+1+1+1+1.

From Gus Wiseman, Nov 25 2019: (Start)

The a(2) = 1 through a(9) = 10 compositions:

  (11)  (111)  (22)    (11111)  (33)      (11122)    (44)        (333)

               (1111)           (222)     (22111)    (1133)      (11133)

                                (1122)    (1111111)  (2222)      (33111)

                                (2211)               (3311)      (111222)

                                (111111)             (11222)     (222111)

                                                     (22211)     (1111122)

                                                     (111122)    (1112211)

                                                     (112211)    (1122111)

                                                     (221111)    (2211111)

                                                     (11111111)  (111111111)

(End)

MAPLE

g:= proc(n, i) option remember; add(b(n-i*j, i), j=2..n/i) end:

b:= proc(n, l) option remember; `if`(n=0, 1,

      add(`if`(i=l, 0, g(n, i)), i=1..n/2))

    end:

a:= n-> b(n, 0):

seq(a(n), n=0..50);  # Alois P. Heinz, Nov 29 2019

MATHEMATICA

Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], Min@@Length/@Split[#]>1&]], {n, 0, 10}] (* Gus Wiseman, Nov 25 2019 *)

CROSSREFS

The case of partitions is A007690.

Compositions with no adjacent parts equal are A003242.

Compositions with all multiplicities > 1 are A240085.

Compositions with minimum multiplicity 1 are A244164.

Compositions with at least two adjacent parts equal are A261983.

Cf. A178470, A238130, A274174, A329863.

Sequence in context: A085261 A179218 A131119 * A194809 A113178 A108362

Adjacent sequences:  A114898 A114899 A114900 * A114902 A114903 A114904

KEYWORD

nonn

AUTHOR

Christian G. Bower, Jan 05 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 25 21:55 EST 2020. Contains 332264 sequences. (Running on oeis4.)