login
A240085
Number of compositions of n in which no part is unique (every part appears at least twice).
19
1, 0, 1, 1, 2, 1, 9, 11, 34, 53, 108, 169, 400, 680, 1530, 2984, 6362, 12498, 25766, 50093, 102126, 199309, 400288, 788227, 1581584, 3135117, 6286310, 12532861, 25121292, 50184582, 100627207, 201208477, 403170900, 806534560, 1615151111, 3231224804, 6467909442
OFFSET
0,5
REFERENCES
S. Heubach and T. Mansour, Combinatorics of Compositions and Words, Chapman and Hall, 2009.
LINKS
Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..2100 (first 500 terms from Alois P. Heinz)
Vaclav Kotesovec, Graph a(n)/2^n
EXAMPLE
a(6) = 9 because we have: 3+3, 2+2+2, 2+2+1+1, 2+1+2+1, 2+1+1+2, 1+2+2+1, 1+2+1+2, 1+1+2+2, 1+1+1+1+1+1.
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, t!, `if`(i<1, 0,
b(n, i-1, t) +add(b(n-i*j, i-1, t+j)/j!, j=2..n/i)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..40); # Alois P. Heinz, Mar 31 2014
MATHEMATICA
Table[Length[Level[Map[Permutations, Select[IntegerPartitions[n], Apply[And, Table[Count[#, #[[i]]]>1, {i, 1, Length[#]}]]&]], {2}]], {n, 0, 20}]
(* Second program: *)
b[n_, i_, t_] := b[n, i, t] = If[n == 0, t!, If[i < 1, 0, b[n, i - 1, t] + Sum[b[n - i*j, i - 1, t + j]/j!, {j, 2, n/i}]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)
CROSSREFS
Cf. A007690.
Sequence in context: A368375 A192324 A063579 * A078623 A198204 A099599
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Mar 31 2014
EXTENSIONS
More terms from Alois P. Heinz, Mar 31 2014
STATUS
approved