OFFSET
0,5
REFERENCES
S. Heubach and T. Mansour, Combinatorics of Compositions and Words, Chapman and Hall, 2009.
LINKS
Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..2100 (first 500 terms from Alois P. Heinz)
Vaclav Kotesovec, Graph a(n)/2^n
EXAMPLE
a(6) = 9 because we have: 3+3, 2+2+2, 2+2+1+1, 2+1+2+1, 2+1+1+2, 1+2+2+1, 1+2+1+2, 1+1+2+2, 1+1+1+1+1+1.
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, t!, `if`(i<1, 0,
b(n, i-1, t) +add(b(n-i*j, i-1, t+j)/j!, j=2..n/i)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..40); # Alois P. Heinz, Mar 31 2014
MATHEMATICA
Table[Length[Level[Map[Permutations, Select[IntegerPartitions[n], Apply[And, Table[Count[#, #[[i]]]>1, {i, 1, Length[#]}]]&]], {2}]], {n, 0, 20}]
(* Second program: *)
b[n_, i_, t_] := b[n, i, t] = If[n == 0, t!, If[i < 1, 0, b[n, i - 1, t] + Sum[b[n - i*j, i - 1, t + j]/j!, {j, 2, n/i}]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Mar 31 2014
EXTENSIONS
More terms from Alois P. Heinz, Mar 31 2014
STATUS
approved