login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240082
Numbers n such that k^n-(k-1)^n-...-3^n-2^n-1 is prime for some k.
1
2, 3, 4, 5, 6, 7, 8, 12, 13, 16, 17, 19, 31, 34, 48, 61, 68, 72, 89, 107, 112, 124, 127, 236, 260, 288, 384, 396, 432, 520, 521, 576, 607, 1080, 1244, 1279, 1424, 1500, 1660, 2203, 2281, 2640, 2730, 2808, 3190, 3217, 4150, 4253, 4423, 4428, 5016, 5892
OFFSET
1,1
COMMENTS
These are the values of n such that A240081(n) is nonzero.
PROG
(Python)
import sympy
from sympy import isprime
def Leq(n):
..for k in range(1000):
....num = k**n
....for i in range(2, k):
......num -= i**n
......if num < 1:
........return None
....if isprime(num-1):
......return k
n = 1
while n < 10**3:
..if Leq(n) != None:
....print(n)
..n += 1
(PARI) f(n)=for(k=1, 10^3, num=k^n; for(i=2, k-1, num-=i^n; if(num<1, return(0))); if(ispseudoprime(num-1), return(k))); n=1; while(n<10^3, if(f(n), print(n)); n+=1)
CROSSREFS
Cf. A240081.
Sequence in context: A119797 A032972 A210585 * A321334 A342044 A238084
KEYWORD
nonn
AUTHOR
Derek Orr, Mar 31 2014
EXTENSIONS
a(34)-a(52) from Giovanni Resta, Apr 02 2014
STATUS
approved