login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A192324 Sequence of numbers formed as remainder of Mersenne numbers divided by primes. 0
1, 0, 2, 1, 9, 11, 8, 8, 5, 8, 1, 25, 32, 0, 8, 27, 32, 26, 12, 47, 7, 35, 46, 3, 94, 19, 75, 61, 22, 3, 7, 116, 67, 24, 137, 63, 149, 42, 60, 9, 71, 155, 39, 11, 72, 50, 47, 40, 23, 25, 70, 47, 31, 15, 127, 172, 73, 109, 117, 58, 29, 246, 201, 207, 283, 52, 127, 31, 138, 55, 284, 23 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Exponent of Mersenne number formula does not have to be a prime.

LINKS

Table of n, a(n) for n=1..72.

FORMULA

a(n) = mod (mersenne(n) / prime(n))

where mersenne(n) returns n-th mersenne number and, correspondingly, prime(n) returns n-th prime number.

EXAMPLE

a(1) = mod(mersenne(1)/prime(1)) = mod(1/2) = 1

a(2) = mod(mersenne(2)/prime(2)) = mod(3/3) = 0

a(3) = mod(mersenne(3)/prime(3)) = mod(7/5) = 2

a(4) = mod(mersenne(4)/prime(4)) = mod(15/7) = 1

a(5) = mod(mersenne(5)/prime(5)) = mod(31/11) = 9

PROG

(MATLAB)

% n = number of computed terms of sequence

for i=1:n,

    a(i) = mod(mersenne(i), prime(i)) ;

end

(PARI) a(n) = (2^n-1)%prime(n)

(PARI) a(n)=lift(Mod(2, prime(n))^n-1) \\ Charles R Greathouse IV, Jun 29 2011

CROSSREFS

Cf. A000225 (Mersenne), A000040 (prime), A082495.

Sequence in context: A048160 A305178 A295851 * A063579 A240085 A078623

Adjacent sequences:  A192321 A192322 A192323 * A192325 A192326 A192327

KEYWORD

nonn

AUTHOR

Pasi Airikka, Jun 28 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 31 02:51 EDT 2020. Contains 334747 sequences. (Running on oeis4.)