login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of chi(x) / phi(x^2) in powers of x where phi(), chi() are Ramanujan theta functions.
5

%I #23 Mar 12 2021 22:24:42

%S 1,1,-2,-1,5,3,-9,-5,18,10,-30,-16,53,29,-85,-44,139,73,-215,-110,335,

%T 172,-502,-253,755,382,-1104,-550,1614,805,-2312,-1142,3305,1631,

%U -4650,-2277,6525,3193,-9041,-4395,12486,6063,-17070,-8247,23255,11218,-31414,-15090,42289,20285

%N Expansion of chi(x) / phi(x^2) in powers of x where phi(), chi() are Ramanujan theta functions.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%H G. C. Greubel, <a href="/A085261/b085261.txt">Table of n, a(n) for n = 0..1000</a>

%H George E. Andrews, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v11i2r1">On a Partition Function of Richard Stanley</a>, The Electronic Journal of Combinatorics, Volume 11, Issue 2 (2004-6) (The Stanley Festschrift volume), #R1.

%H M. Ishikawa and J. Zeng, <a href="http://dx.doi.org/10.1016/j.disc.2007.12.064">The Andrews-Stanley partition function and Al-Salam-Chihara polynomials</a>, Disc. Math., 309 (2009), 151-175. (See t(n) p. 151. Note that there is a typo in the g.f. for f(n) - see A144558.) [Added by _N. J. A. Sloane_, Jan 25 2009.]

%H O. P. Lossers, <a href="http://www.jstor.org/stable/4145085">Comparing Odd Parts in Conjugate Partitions: Solution 10969</a>, Amer. Math. Monthly, 111 (Jun-Jul 2004), pp. 536-539.

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H R. P. Stanley, <a href="http://www.jstor.org/stable/3072410">Problem 10969</a>, Amer. Math. Monthly, 109 (2002), 760.

%F Expansion of psi(x) / f(x^2)^2 in powers of x where psi(), f() are Ramanujan theta functions. - _Michael Somos_, Sep 02 2014

%F Expansion of q^(1/24) * eta(q^2)^4 * eta(q^8)^2 / (eta(q) * eta(q^4)^6) in powers of q.

%F Euler transform of period 8 sequence [1, -3, 1, 3, 1, -3, 1, 1, ...].

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (2304 t)) = 24^(-1/2) (t/i)^(-1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A246712. - _Michael Somos_, Sep 02 2014

%F G.f.: Product_{k>0} (1 + x^(2*k - 1)) / ((1 - x^(4*k)) * (1 + x^(4*k - 2))^2).

%e G.f. = 1 + x - 2*x^2 - x^3 + 5*x^4 + 3*x^5 - 9*x^6 - 5*x^7 + 18*x^8 + 10*x^9 - ...

%e G.f. = 1/q + q^23 - 2*q^47 - q^71 + 5*q^95 + 3*q^119 - 9*q^143 - 5*q^167 + 18*q^191 + ...

%p t1:=mul( (1+q^(2*n-1))/((1-q^(4*n))*(1+q^(4*n-2))^2), n=1..100): t2:=series(t1,q,100): f:=n->coeff(t2,q,n); # _N. J. A. Sloane_, Jan 25 2009

%t a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] / EllipticTheta[ 3, 0, x^2], {x, 0, n}]; (* _Michael Somos_, Jun 01 2014 *)

%t a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^(1/2)] / (2 x^(1/8) QPochhammer[ -x^2]^2), {x, 0, n}]; (* _Michael Somos_, Sep 02 2014 *)

%o (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^8 + A)^2 / eta(x + A) / eta(x^4 + A)^6, n))};

%o (PARI) {a(n) = polcoeff( prod( k=1,( n+1)\2, 1 + x^(2*k - 1), 1 + x * O(x^n)) / prod(k=1, (n+2)\4, (1 - x^(4*k)) * (1 + x^(4*k - 2))^2, 1 + x * O(x^n)), n)};

%Y Cf. A000041, A097566, A190101, A246712.

%K sign

%O 0,3

%A _Michael Somos_, Jun 23 2003