login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A144558 Expansion of Product_{n >= 1} (1+q^(2*n-1))/((1-q^(4*n))*(1+q^(4*n-2))). 3
1, 1, -1, 0, 3, 2, -3, -1, 8, 5, -8, -3, 18, 11, -19, -7, 38, 22, -41, -16, 75, 42, -82, -33, 142, 78, -157, -64, 258, 138, -288, -120, 455, 239, -511, -215, 781, 404, -882, -374, 1310, 668, -1486, -635, 2153, 1084, -2450, -1053, 3477, 1733, -3967, -1712, 5524, 2726, -6316, -2737, 8652, 4233, -9907 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

The authors of the article have informed me that there is a typo in the published g.f. - the factor (1+q^(4*n-2)) should be squared. When this is done, we get the sequence A085261. In short, this is an erroneous version of A085261.

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

M. Ishikawa and J. Zeng, The Andrews-Stanley partition function and Al-Salam-Chihara polynomials, Disc. Math., 309 (2009), 151-175.

Michael Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

From Michael Somos, Jun 04 2012: (Start)

Expansion of chi(x) / f(x^2) in powers of x where chi(), f() are Ramanujan theta functions.

Expansion of q^(1/8) * eta(q^2)^3 * eta(q^8) / (eta(q) * eta(q^4)^4) in powers of q.

Euler transform of period 8 sequence [ 1, -2, 1, 2, 1, -2, 1, 1, ...]. (End)

EXAMPLE

G.f. = 1 + x - x^2 + 3*x^4 + 2*x^5 - 3*x^6 - x^7 + 8*x^8 + 5*x^9 - 8*x^10 + ...

G.f. = 1/q + q^7 - q^15 + 3*q^31 + 2*q^39 - 3*q^47 - q^55 + 8*q^63 + 5*q^71 + ...

MATHEMATICA

QP = QPochhammer; s = QP[q^2]^3*(QP[q^8]/(QP[q]*QP[q^4]^4)) + O[q]^60; CoefficientList[s, q] (* Jean-François Alcover, Nov 14 2015, adapted from PARI *)

PROG

(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^8 + A) / (eta(x + A) * eta(x^4 + A)^4), n))}; /* Michael Somos, Jun 04 2012 */

CROSSREFS

Sequence in context: A289773 A197475 A195381 * A307551 A220344 A176102

Adjacent sequences:  A144555 A144556 A144557 * A144559 A144560 A144561

KEYWORD

sign

AUTHOR

N. J. A. Sloane, Jan 02 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 11:07 EST 2021. Contains 349419 sequences. (Running on oeis4.)