OFFSET
0,2
COMMENTS
For n>0, A289772(n)/a(n) lists the rationals of a quinary analog of the Calkin-Wilf tree. See the Ponton link.
LINKS
Robert Israel, Table of n, a(n) for n = 0..10000
Lionel Ponton, Two trees enumerating the positive rationals, arXiv:1707.02366 [math.NT], 2017. See p. 7.
Lionel Ponton, Two trees enumerating the positive rationals, Integers, Electronic Journal of Combinatorial Number Theory 18A (2018), #A17.
EXAMPLE
Tree of rationals begin:
0;
1/3;
1/2, 2/3, 1, 1/6, 2/5;
5/9, 3/4, 4/3, 1/5, 5/12, 4/7, 7/9, 3/2, 2/9, 3/7, 7/12, 4/5, 5/3, 1/4, 4/9, 3/5, 5/6, 2, 1/9, 3/8, 8/15, 5/7, 7/6, 2/11, 11/27;
...
MAPLE
b:= proc(n) option remember; 1/(3*(1+2*padic:-ordp(n, 5)-procname(n-1))) end proc:
b(0):= 0:
map(denom@b, [$0..100]); # Robert Israel, Jul 12 2017
MATHEMATICA
a[0] = 0; a[n_] := a[n] = 1/(3 (1 + 2 IntegerExponent[n, 5] - a[n - 1])); Table[Denominator@ a@ n, {n, 0, 76}] (* Michael De Vlieger, Jul 12 2017 *)
PROG
(PARI) b(n) = if (n==0, 0, 1/(3*(1+2*valuation(n, 5) - b(n-1))));
lista(nn) = for (n=0, nn, print1(denominator(b(n)), ", "));
CROSSREFS
KEYWORD
AUTHOR
Michel Marcus, Jul 12 2017
STATUS
approved