Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Dec 12 2023 13:41:46
%S 1,3,2,3,1,6,5,9,4,3,5,12,7,9,2,9,7,12,5,3,4,9,5,6,1,9,8,15,7,6,11,27,
%T 16,21,5,24,19,33,14,9,13,30,17,21,4,15,11,18,7,3,8,21,13,18,5,27,22,
%U 39,17,12,19,45,26,33,7,30,23,39,16,9,11,24,13,15,2,15,13
%N a(n) is the denominator of b(n) where b(n) = 1/(3*(1+2*A112765(n) - b(n-1))) and b(0) = 0, with A112765(n) being the 5-adic valuation of n.
%C For n>0, A289772(n)/a(n) lists the rationals of a quinary analog of the Calkin-Wilf tree. See the Ponton link.
%H Robert Israel, <a href="/A289773/b289773.txt">Table of n, a(n) for n = 0..10000</a>
%H Lionel Ponton, <a href="https://arxiv.org/abs/1707.02366">Two trees enumerating the positive rationals</a>, arXiv:1707.02366 [math.NT], 2017. See p. 7.
%H Lionel Ponton, <a href="http://math.colgate.edu/~integers/sjs17/sjs17.Abstract.html">Two trees enumerating the positive rationals</a>, Integers, Electronic Journal of Combinatorial Number Theory 18A (2018), #A17.
%e Tree of rationals begin:
%e 0;
%e 1/3;
%e 1/2, 2/3, 1, 1/6, 2/5;
%e 5/9, 3/4, 4/3, 1/5, 5/12, 4/7, 7/9, 3/2, 2/9, 3/7, 7/12, 4/5, 5/3, 1/4, 4/9, 3/5, 5/6, 2, 1/9, 3/8, 8/15, 5/7, 7/6, 2/11, 11/27;
%e ...
%p b:= proc(n) option remember; 1/(3*(1+2*padic:-ordp(n,5)-procname(n-1))) end proc:
%p b(0):= 0:
%p map(denom@b, [$0..100]); # _Robert Israel_, Jul 12 2017
%t a[0] = 0; a[n_] := a[n] = 1/(3 (1 + 2 IntegerExponent[n, 5] - a[n - 1])); Table[Denominator@ a@ n, {n, 0, 76}] (* _Michael De Vlieger_, Jul 12 2017 *)
%o (PARI) b(n) = if (n==0, 0, 1/(3*(1+2*valuation(n, 5) - b(n-1))));
%o lista(nn) = for (n=0, nn, print1(denominator(b(n)), ", "));
%Y Cf. A002487, A277749, A277750, A289772.
%K nonn,frac,tabf,look
%O 0,2
%A _Michel Marcus_, Jul 12 2017