OFFSET
1,6
COMMENTS
Also the sum of the series Sum_{n>=0} (1/(2n+1)^8), whose value is obtained from zeta(8) given by L. Euler in 1735: Sum_{n>=0} (2n+1)^(-s)=(1-2^(-s))*zeta(s).
FORMULA
Equals 17*A092736/161280. - Omar E. Pol, Mar 11 2018
EXAMPLE
1.0001551790252961193029872492957280415665429750613740...
MAPLE
evalf((17/161280)*Pi^8, 120)
MATHEMATICA
RealDigits[(17/161280)*Pi^8, 10, 120][[1]]
PROG
(PARI) default(realprecision, 120); (17/161280)*Pi^8
(MATLAB) format long; (17/161280)*pi^8
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Iaroslav V. Blagouchine, Mar 11 2018
STATUS
approved