login
Decimal expansion of 17*Pi^8/161280.
3

%I #15 Oct 01 2022 00:17:23

%S 1,0,0,0,1,5,5,1,7,9,0,2,5,2,9,6,1,1,9,3,0,2,9,8,7,2,4,9,2,9,5,7,2,8,

%T 0,4,1,5,6,6,5,4,2,9,7,5,0,6,1,3,7,4,0,4,3,6,8,7,1,9,9,6,1,5,9,2,3,4,

%U 7,1,3,0,0,4,1,6,2,5,3,7,0,1,8,3,9,0,5,5,6,3,9,6,2,8,7,2,9,8,9,3,1,1,2

%N Decimal expansion of 17*Pi^8/161280.

%C Also the sum of the series Sum_{n>=0} (1/(2n+1)^8), whose value is obtained from zeta(8) given by L. Euler in 1735: Sum_{n>=0} (2n+1)^(-s)=(1-2^(-s))*zeta(s).

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>

%F Equals 17*A092736/161280. - _Omar E. Pol_, Mar 11 2018

%e 1.0001551790252961193029872492957280415665429750613740...

%p evalf((17/161280)*Pi^8, 120)

%t RealDigits[(17/161280)*Pi^8, 10, 120][[1]]

%o (PARI) default(realprecision, 120); (17/161280)*Pi^8

%o (MATLAB) format long; (17/161280)*pi^8

%Y Cf. A092736, A111003, A300707, A300709.

%K nonn,cons

%O 1,6

%A _Iaroslav V. Blagouchine_, Mar 11 2018