Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Mar 18 2021 07:33:44
%S 1,9,4,1,1,8,1,6,9,8,3,2,6,3,3,7,9,2,2,9,9,5,8,7,4,8,4,9,1,1,3,8,0,8,
%T 3,7,4,5,1,8,7,7,0,1,8,4,5,2,7,9,2,1,9,7,7,3,5,0,4,3,4,9,4,0,4,1,0,3,
%U 8,0,8,7,4,2,0,5,7,9,2,5,2,6,3,3,9,3,9,5,3,9,8,7,7,6,5,4,3,5,3,6,7,8,8,2,3
%N Decimal expansion of Sum_{p prime} 1/(p^3 - 1).
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrimeZetaFunction.html">Prime Zeta Function</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrimeSums.html">Prime Sums</a>.
%F Equals Sum_{k>=1} primezeta(3*k).
%F More generally, Sum_{p prime} 1/(p^s - 1) = Sum_{k>=1} primezeta(s*k).
%e 1/(2^3 - 1) + 1/(3^3 - 1) + 1/(5^3 - 1) + ... = 1/2^3 + 1/3^3 + 1/5^3 + ... + 1/2^6 + 1/3^6 + 1/5^6 + ... + 1/2^9 + 1/3^9 + 1/5^9 + ... = 0.19411816983263379229...
%t digits = 105; sp = NSum[PrimeZetaP[3 n], {n, 1, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 2*digits]; RealDigits[sp, 10, digits] // First
%o (PARI) sumeulerrat(1/(p^3-1)) \\ _Amiram Eldar_, Mar 18 2021
%Y Cf. A030078, A085541, A154945.
%K nonn,cons
%O 0,2
%A _Ilya Gutkovskiy_, May 04 2017