Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #50 Jan 29 2022 09:40:50
%S 1,5,1,25,11,1,125,91,18,1,625,671,217,26,1,3125,4651,2190,425,35,1,
%T 15625,31031,19981,5590,740,45,1,78125,201811,170898,64701,12250,1190,
%U 56,1,390625,1288991,1398097,688506,174951,24150,1806,68,1,1953125,8124571,11075670,6906145,2263065,416451,44016,2622,81,1,9765625,50700551,85654261,66324830,27273730,6427575,900627,75480,3675,95,1
%N 5-Stirling numbers of the second kind.
%C This is the lower triangular Sheffer matrix (exp(5*x),exp(x)-1). For Sheffer matrices see the W. Lang link under A006232 with references, and the rules for the conversion to the umbral notation of S. Roman's book.
%C The general case is Sheffer (exp(r*x),exp(x)-1), r=0,1,..., corresponding to r-Stirling2 numbers with row and column offsets 0. See the Broder link for r-Stirling2 numbers with offset [r,r].
%C a(n,m), n >= m >= 0, gives the number of partitions of the set {1.2....,n+5} into m+5 nonempty distinct subsets such that 1,2,3,4 and 5 belong to distinct subsets.
%C a(n,m) appears in the following normal ordering of Bose operators a and a* satisfying the Lie algebra [a,a*]=1: (a*a)^n (a*)^5 = Sum_{m=0..n} a(n,m)*(a*)^(5+m)*a^m, n >= 0. See the Mikhailov papers, where a(n,m) = S(n+5,m+5,5).
%C With a->D=d/dx and a*->x we also have
%C (xD)^n x^5 = Sum_{m=0..n} a(n,m)*x^(5+m)*D^m, n >= 0.
%H Vincenzo Librandi, <a href="/A193685/b193685.txt">Rows n = 0..100, flattened</a>
%H Peter Bala, <a href="/A035342/a035342_Bala.txt">Generalized Dobinski formulas</a>
%H Andrei Z. Broder, <a href="http://infolab.stanford.edu/TR/CS-TR-82-949.html">The r-Stirling numbers</a>, Discrete Math. 49, 241-259 (1984)
%H A. Dzhumadildaev and D. Yeliussizov, <a href="http://arxiv.org/abs/1408.6764v1">Path decompositions of digraphs and their applications to Weyl algebra</a>, arXiv preprint arXiv:1408.6764v1 [math.CO], 2014. [Version 1 contained many references to the OEIS, which were removed in Version 2. - _N. J. A. Sloane_, Mar 28 2015]
%H Askar Dzhumadil’daev and Damir Yeliussizov, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i4p10">Walks, partitions, and normal ordering</a>, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10.
%H V. V. Mikhailov, <a href="http://dx.doi.org/10.1088/0305-4470/16/16/019">Ordering of some boson operator functions</a>, J. Phys A: Math. Gen. 16 (1983) 3817-3827.
%H V. V. Mikhailov, <a href="http://dx.doi.org/10.1088/0305-4470/18/2/012">Normal ordering and generalised Stirling numbers</a>, J. Phys A: Math. Gen. 18 (1985) 231-235.
%F E.g.f. of row polynomials s(n,x):=Sum_{m=0..n} a(n,m)*x^m: exp(5*z + x(exp(z)-1)).
%F E.g.f. of column no. m (with leading zeros):
%F exp(5*x)*((exp(x)-1)^m)/m!, m >= 0 (Sheffer).
%F O.g.f. of column no. m (without leading zeros):
%F 1/Product_{j=0..m} (1-(5+j)*x), m >= 0. (Compute the first derivative of the column e.g.f. and compare its Laplace transform with the partial fraction decomposition of the o.g.f. x^(m-1)/Product_{j=0..m} (1-(5+j)*x). This works for every r-restricted Stirling2 triangle.)
%F Recurrence: a(n,m) = (5+m)*a(n-1,m) + a(n-1,m-1), a(0,0)=1, a(n,m)=0 if n < m, a(n,-1)=0.
%F a(n,m) = Sum_{j=0..min(5,n-m)} S1(5,5-j)*S2(n+5-j,m+5), n >= m >= 0, with S1 and S2 the Stirling1 and Stirling2 numbers A008275 and A048993, respectively (see the Mikailov papers).
%F Dobinski-type formula for the row polynomials: R(n,x) = exp(-x)*Sum_{k>=0} k*(4+k)^(n-1)*x^(k-1)/k!. - _Peter Bala_, Jun 23 2014
%e n\m 0 1 2 3 4 5 ...
%e 0 1
%e 1 5 1
%e 2 25 11 1
%e 3 125 91 18 1
%e 4 625 671 217 26 1
%e 5 3125 4651 2190 425 35 1
%e ...
%e 5-restricted S2: a(1,0)=5 from 1,6|2|3|4|5, 2,6|1|3|4|5,
%e 3,6|1|2|4|5, 4,6|1|2|3|5 and 5,6|1|2|3|4.
%e Recurrence: a(4,2) = (5+2)*a(3,2)+ a(3,1) = 7*18 + 91 = 217.
%e Normal ordering (n=1): (xD)^1 x^5 = Sum_{m=0..1} a(1,m)*x^(5+m)*D^m = 5*x^5 + 1*x^6*D.
%e a(2,1) = Sum_{j=0..1} S1(5,5-j)*S2(7-j,6) = 1*21 - 10*1 = 11.
%t a[n_, m_] := Sum[ StirlingS1[5, 5-j]*StirlingS2[n+5-j, m+5], {j, 0, Min[5, n-m]}]; Flatten[ Table[ a[n, m], {n, 0, 10}, {m, 0, n}] ] (* _Jean-François Alcover_, Dec 02 2011, after _Wolfdieter Lang_ *)
%Y Cf. A048993, A143494, A143495, A143496.
%Y Cf. A196834 (row sums), A196835 (alternating row sums).
%Y Columns: A000351 (m=0), A005062 (m=1), A019757 (m=2), A028165 (m=3), ...
%K nonn,easy,tabl
%O 0,2
%A _Wolfdieter Lang_, Oct 06 2011