login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193684
Alternating row sums of Sheffer triangle A143496 (4-restricted Stirling2 numbers).
7
1, 3, 8, 17, 17, -78, -585, -2021, -1710, 29395, 231413, 856264, -346979, -30019585, -232782792, -834712259, 2313820717, 59793779314, 469729578123, 1597321309383, -9914171906614, -206169178856073, -1697255630380351, -5677886943413120, 55801423903125353
OFFSET
0,2
COMMENTS
In order to have A143496 as a lower triangular Sheffer matrix one uses row and column offsets 0 (not 4).
LINKS
FORMULA
E.g.f.: exp(-exp(x)+4*x+1).
a(n) = exp(1) * Sum_{k>=0} (-1)^k * (k + 4)^n / k!. - Ilya Gutkovskiy, Dec 20 2019
a(0) = 1; a(n) = 4 * a(n-1) - Sum_{k=0..n-1} binomial(n-1,k) * a(k). - Seiichi Manyama, Aug 02 2021
EXAMPLE
With offset [0,0] row n=3 of A143496 is [64,61,15,1], hence a(3)=64-61+15-1=17.
PROG
(PARI) my(x='x+O('x^30)); Vec(serlaplace(exp(-exp(x)+4*x+1))) \\ Michel Marcus, Aug 02 2021
CROSSREFS
Cf. A143496, A193683 (3-restricted Stirling2 case), A196835, A293037, A346739.
Sequence in context: A027291 A048952 A079666 * A308850 A368273 A335047
KEYWORD
sign,easy
AUTHOR
Wolfdieter Lang, Oct 06 2011
STATUS
approved