login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A308850
Expansion of e.g.f. exp(-2*x) / (BesselI(0,2*x) + BesselI(1,2*x)).
1
1, -3, 8, -17, 18, 58, -364, 369, 6194, -37382, -28848, 1717274, -8592644, -47472804, 918146560, -2911313551, -61122074382, 806675821162, 46813084592, -105331573943466, 1018198168087636, 6417696715221572, -247555432672498872, 1535509971584425358, 34028097257000628028, -764203552200012087252
OFFSET
0,2
COMMENTS
E.g.f. is inverse of e.g.f. for A001700.
FORMULA
E.g.f.: 1 / Sum_{k>=0} binomial(2*k+1,k+1)*x^k/k!.
MATHEMATICA
nmax = 25; CoefficientList[Series[Exp[-2 x]/(BesselI[0, 2 x] + BesselI[1, 2 x]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = -Sum[Binomial[n, k] Binomial[2 k + 1, k + 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 25}]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Jun 28 2019
STATUS
approved