login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308848
Expansion of e.g.f. exp(-x) / BesselI(0,2*x).
1
1, -1, -1, 5, 7, -71, -139, 2071, 5335, -103207, -331511, 7853251, 30256381, -847377805, -3808492297, 123081031165, 632196102455, -23155450005175, -133802756269735, 5477371955388355, 35167483918412257, -1591161899246627297, -11237664710770159597, 556875003328690925825, 4290500676272573740429
OFFSET
0,4
COMMENTS
E.g.f. is inverse of e.g.f. for A002426 (central trinomial coefficients).
FORMULA
E.g.f.: 1 / Sum_{k>=0} A002426(k)*x^k/k!.
MATHEMATICA
nmax = 24; CoefficientList[Series[Exp[-x]/BesselI[0, 2 x], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = -Sum[Binomial[n, k] 3^k Hypergeometric2F1[1/2, -k, 1, 4/3] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 24}]
PROG
(PARI) my(x='x+O('x^30)); Vec(serlaplace(exp(-x) / besseli(0, 2*x))) \\ Michel Marcus, Jul 02 2019
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Jun 28 2019
STATUS
approved