login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308846
Expansion of e.g.f. x*exp(-x) / BesselI(1,2*x).
0
1, -1, 0, 2, -1, -11, 11, 125, -181, -2443, 4534, 73116, -164075, -3106169, 8150624, 177689590, -533231545, -13167063415, 44461467464, 1226832808294, -4603245727023, -140381127928757, 579412786145335, 19352381237997941, -87137414891475575, -3163451350469601721, 15431005593881754746
OFFSET
0,4
COMMENTS
E.g.f. is inverse of e.g.f. for A001006 (Motzkin numbers).
FORMULA
E.g.f.: 1 / Sum_{k>=0} A001006(k)*x^k/k!.
MATHEMATICA
nmax = 26; CoefficientList[Series[x Exp[-x]/BesselI[1, 2 x], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = -Sum[Binomial[n, k] Hypergeometric2F1[(1 - k)/2, -k/2, 2, 4] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 26}]
PROG
(PARI) my(x='x+O('x^30)); Vec(serlaplace(exp(-x) / besseli(1, 2*x))) \\ Michel Marcus, Jul 02 2019
CROSSREFS
Sequence in context: A079795 A052037 A213302 * A038586 A140316 A295852
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Jun 28 2019
STATUS
approved