login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246432
Convolution inverse of A001700.
4
1, -3, -1, -2, -5, -14, -42, -132, -429, -1430, -4862, -16796, -58786, -208012, -742900, -2674440, -9694845, -35357670, -129644790, -477638700, -1767263190, -6564120420, -24466267020, -91482563640, -343059613650, -1289904147324, -4861946401452
OFFSET
0,2
LINKS
FORMULA
G.f.: (1 + sqrt(1 - 4*x)) / 2 - 2*x.
G.f.: -2*x + 1 - x / (1 - x / (1 - x / ...)) (continued fraction).
a(n) = A115140(n) = A115141(n) for all n in Z unless n=1.
a(n) = -A000108(n-1) for all n>1.
EXAMPLE
G.f. = 1 - 3*x - x^2 - 2*x^3 - 5*x^4 - 14*x^5 - 42*x^6 - 132*x^7 - 429*x^8 + ...
MATHEMATICA
CoefficientList[Series[(1 +Sqrt[1-4*x])/2 -2*x, {x, 0, 50}], x] (* G. C. Greubel, Aug 04 2018 *)
PROG
(PARI) {a(n) = if( n<2, (n==0) - 3*(n==1), - binomial(2*n - 2, n-1) / n)};
(PARI) {a(n) = if( n<0, 0, polcoeff( (1 + sqrt(1 - 4*x + x * O(x^n))) / 2 - 2*x, n))};
(Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1 +Sqrt(1-4*x))/2 -2*x)); // G. C. Greubel, Aug 04 2018
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Nov 14 2014
STATUS
approved