login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051277
Coefficients in 7-adic expansion of sqrt(2).
12
3, 1, 2, 6, 1, 2, 1, 2, 4, 6, 6, 2, 1, 1, 0, 2, 1, 1, 4, 6, 1, 3, 2, 6, 6, 3, 5, 5, 6, 3, 4, 5, 0, 1, 6, 3, 0, 4, 6, 2, 4, 4, 6, 4, 2, 4, 4, 2, 6, 1, 3, 4, 1, 3, 1, 4, 2, 6, 6, 0, 3, 5, 5, 1, 1, 2, 0, 6, 6, 1, 1, 2, 4, 4, 4, 2, 3, 6, 6, 3, 6, 1, 4, 4, 2, 2, 1, 3
OFFSET
0,1
REFERENCES
Alf van der Poorten, Notes on Fermat's Last Theorem, Wiley, 1996, p. 76.
FORMULA
Equals the 7-adic limit as n -> oo of 2*T(7^n,3/2) = the 7-adic limit as n -> oo of ((3 + sqrt(5))/2)^(7^n) + ((3 - sqrt(5))/2)^(7^n), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Nov 20 2022
EXAMPLE
3 + 7 + 2*7^2 + 6*7^3 + 7^4 + 2*7^5 + 7^6 + ...
MAPLE
t := proc(n) option remember; if n = 1 then 3 else irem(t(n-1)^7 - 7*t(n-1)^5 + 14*t(n-1)^3 - 7*t(n-1), 7^n) end if; end:
convert(t(100), base, 7); # Peter Bala, Nov 20 2022
PROG
(PARI) Vecrev(digits(lift(sqrt(2+O(7^99))), 7)) \\ Joerg Arndt, Aug 05 2017
CROSSREFS
Sequence in context: A049919 A246432 A112571 * A300908 A080818 A334354
KEYWORD
nonn,easy,nice
EXTENSIONS
Missing terms=0 inserted by Seiichi Manyama, Aug 04 2017
STATUS
approved